期刊文献+

面向GWAS未覆盖基因组区的数据集成 被引量:1

Data integration for missing genomic regions of current genome wide association studies
在线阅读 下载PDF
导出
摘要 针对面向整个全基因组关联研究(genome-wide association studies,GWAS)未覆盖基因组区的数据集成问题,提出基于自训练的半监督机器学习实现的语意映射技术应用于该研究领域的方法。研究结果表明:该方法能有效实现对整个GWAS未覆盖基因组区的自动的语意映射,精度达到94.2%,召回率达到97.5%,能有效降低对人类专家的依赖程度,实现对整个GWAS未覆盖基因组区数据的快捷有效集成。 To solve the problem of data integration on the missing genomic regions associated with genome-wide association study (GWAS), a method about the semantic mapping technique was put forward and investigated based on self-training half supervision machine learning. The results show that the method can effectively deal with the automatic semantic mapping for the missing genomic regions associated with whole GWAS with accuracy of 94.2% and recall rate of 97.5%, and effectively reduce the reliance on human experts. The method can quickly and effectively achieve the goal of data integration on the missing genomic regions of whole GWAS.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期1875-1880,共6页 Journal of Central South University:Science and Technology
基金 国家杰出青年基金资助项目(61125301)
关键词 全基因组关联研究 覆盖基因组区 数据集成 GWAS missing genomic regions data integration
  • 相关文献

参考文献19

  • 1International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs[J]. Nature, 2007, 449(7164): 851-861.
  • 2Wall J D, Pritchard J K. Using haplotype blocks to map human complex trait loci[J]. Trends in Genetics, 2003, 19(3): 135-140.
  • 3Barrett T, Troup D B, Wilhite functional genomics data sets 2011, 39(1): 1005-1010.
  • 4S E, et al. NCBI GEO: Archive for 10 years on[J]. Nucleic Acids Res, Croft D, O'Kelly G, Wu G, et al. Reactome: A database of reactions,pathways and biological processes[J]. Nucleic Acids Res, 2011, 39(1): 691-697.
  • 5Keseler I M, Collado-Vides J, Santos-Zavaleta A, et al. EcoCyc: A comprehensive database of Escherichia eoli biology[J]. Nucleic Acids Res, 2011, 39(1): 583-590.
  • 6Mardis E R. The $1,000 genome, the $100,000 analysis?[J]. Genome Med, 2010, 2(11): 84.
  • 7Maneoni A, Rodriguez-Tom'e P. A survey on integrating data in bioinformatics[C]//Leaming Structure and Schemas from Documents. Biba M, Xhafa F, eds. Computational Intelligence, 2011, 375: 413-432.
  • 8韩建文,张学军.全基因组关联研究现状[J].遗传,2011,33(1):25-35. 被引量:28
  • 9权晟,张学军.全基因组关联研究的深度分析策略[J].遗传,2011,33(2):100-108. 被引量:19
  • 10凃欣,石立松,汪樊,王擎.全基因组关联分析的进展与反思[J].生理科学进展,2010,41(2):87-94. 被引量:36

二级参考文献59

  • 1Todd JA.Statistical false positive or true disease pathway? Nat Genet,2006,38:731-733.
  • 2Myles S,Davison D,Barrett,et al.Worldwide population differentiation at disease-associated SNPs.BMC Med Genomics,2008,1:22.
  • 3Terwilliger JD,Hiekkalinna T.An utter refutation of the "Fundamental Theorem of the HapMap".Eur J Hum Genet,2006,14:426-437.
  • 4Pritchard JK.Are rare variants responsible for susceptibility to common diseases? Am J Hum Genet,2001,69:124-137.
  • 5McCarthy MI,Hirschhorn JN.Genome-wide association studies:potential next steps on a genetic journey.Hum Mol Genet,2008,17:R156-R165.
  • 6McCarthy MI,Abecasis GR,Cardon LR,et al.Genome-wide association studies for complex traits:consensus,uncertainty and challenges.Nat Rev Genet,2008,9:356-369.
  • 7Abecasis GR.The 1000 Genomes Project:analysis of pilot datasets.Biology of Genomes page 246 (Cold Spring Harbor Laboratory,5~9 May 2009 http://www.csh1.edu/).
  • 8Sham P,Bader JS,Craig I,et al.DNA pooling:a tool for large-scale association studies.Nat Rev Genet,2002,3:862-871.
  • 9Sham PC,Cherny SS,Purcell S,et al.Power of linkage versus association analysis of quantitative traits,by use of variance-components models,for sibship data.Am J Hum Genet,2000,6:1616-1630.
  • 10Levy D,DeStefano AL,Larson MG,et al.Evidence for a gene influencing blood pressure on chromosome 17.Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study.Hypertension,2000,36:477-483.

共引文献68

同被引文献34

引证文献1

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部