期刊文献+

绿色铁基合金镀层的结构与性能

Microstructure and Properties of Green Fe-based Alloy Coatings
在线阅读 下载PDF
导出
摘要 基于铁基电刷镀层在绿色再制造工程中的巨大优势和潜力,在铁基电刷镀体系的基础上添加可共沉积的化学离子制备铁基合金镀层,并通过扫描电子显微镜、X射线衍射仪、摩擦磨损试验机等分析测试手段,研究添加离子对镀层形貌、成分、结构、硬度、摩擦磨损性能的影响,同时研究镀层的热稳定性。结果表明:添加与Fe离子共沉积的W元素可以提高铁镀层的硬度,降低应力开裂现象,但镀层致密度低,耐磨性差;通过进一步添加具有润滑和优异塑性流动能力的Cu元素可以细化镀层组织,改善耐磨性。三种铁基镀层在热处理过程中均有新相Fe3C形成,随着温度的升高,镀层晶粒长大;Fe和Fe-W镀层在450~650℃区间出现二次硬化现象。 Base on the great advantages of Fe-based electro-brush plating in the green remanufacturing engineering, Fe-based alloy coating are prepared by adding co-deposition chemical ion to plating bath. Scanning electron microscopy (SEM), X-ray diffraction (XRD), friction and wear tests are applied to study the influence of adding ion on the morphology, composition, structure, hardness and wear properties of Fe-based coating. The effects of heat treatment on the coatings' properties are also investigated. The results show that adding W can improve hardness of Fe-based coating and reduce stress cracking phenomenon, but decrease the density and wear resistance. It can refine coating organization and improve wear resistance by adding Cu which has lubrication and excellent plastic flow capacity on the basis of Fe-W binary alloy coating. The Fe3C phase is forming during heat treatment for the three kinds of Fe-based coating, and the crystallinity is getting high as the temperature increases. It has a secondary hardening phenomenon for Fe and Fe-W coatings in the range of 450-650℃.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第7期66-71,共6页 Journal of Mechanical Engineering
基金 国家重点基础研究发展计划(973计划 2011CB013404) 国家自然科学基金(1275105)资助项目
关键词 合金镀层 Fe-W-Cu 结构 磨损 Alloy coating Fe-W-Cu Microstructure Wear
  • 相关文献

参考文献15

  • 1WU Bin, XU Binshi, ZHANG Bin, et al. Automatic brush plating : An update on brush plating[J]. Materials Letters, 2006, 60(13-14): 1673-1677.
  • 2XU Binshi, ZHANG Wei. Progress and application of nano-surface engineering in China[J]. Novel Materials Processing by Advanced Electromagnetic Energy Sources, 2005: 339-343.
  • 3杜强.电镀白铜锡代镍工艺[J].电镀与环保,2003,23(5):16-18. 被引量:7
  • 4董文仲,阎军,贾珊中,刘勇,董文胜,董玉华.合金镀铁层的结合和强化机理研究[J].中国表面工程,2011,24(1):1-5. 被引量:10
  • 5TERASAKI H, YAAMOTO Y, KOMIZO Y. In situ studies of nonlinear d-spacing changes in titanium and steel alloys[J]. Materials Letters, 2011, 65(12) : 1745 - 1748.
  • 6ROJAS D, GARCIA J, PRAT O, et al. 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650℃ [J]. Materials Science and Engineering: A, 2011, 528(15): 5164-5176.
  • 7TAHER E B, MOHAMMED G, IBRAHIM M, ctal. Development of carbon-low alloy steel grades for low tcrnpcraturc applications[J]. Materials Science and Engineering: A, 2011, 528(18): 6039-6044.
  • 8ZHAN Dong-ping ZHANG Hui-shu JIANG Zhou-hua.Effects of AlMnCa and AlMnFe Alloys on Deoxidization of Low Carbon and Low Silicon-Aluminum Killed Steels[J].Journal of Iron and Steel Research International,2008,15(3):15-18. 被引量:8
  • 9MA Bo PENG Yan JIA Bin LIU Yun-fei.Static Recrystallization Kinetics Model After Hot Deformation of Low-Alloy Steel Q345B[J].Journal of Iron and Steel Research International,2010,17(8):61-66. 被引量:20
  • 10ILYAS Y, METIN U. The effect of salt bath cementation on mechanical behavior of hot-rolled and cold-drawn SAE 8620 and 16MnCr5 steels[J]. Vacuum, 2010, 85(3): 390-396.

二级参考文献36

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部