期刊文献+

特高压变电站支柱绝缘子重覆冰闪络仿真计算与试验分析 被引量:5

Study on Flashover Model of UHV Substation Post Insulator in Serious Icing Condition
原文传递
导出
摘要 变电站支柱类绝缘子比线路绝缘子更容易覆冰,对输电线路影响更严重。为了获取特高压(UHV)变电站支柱类绝缘子覆冰后电气特性,建立了基于Obenaus概念的特高压支柱绝缘子重覆冰闪络物理模型,对比了固体涂层法和覆冰水电导率法试验得到的闪络电压结果。试验得出:覆冰水电导率和表面盐密对闪络电压的影响相互独立且均为负幂指数趋势;不同的污秽度与不同覆冰水电导率之间具有线性对应关系。建立了计算模型,将污秽和喷淋水电导率对覆冰闪络电压的综合影响等效为只有冰层没有污层的状态,降低了计算的难度。利用该模型计算了重覆冰条件下特高压支柱绝缘子的闪络电压,结果与试验验结果的误差<10%,验证了模型的准确性。 Substation post insulators are easier to ice than line insulators,and they impact transmission lines more seriously.In order to obtain icing electrical performance of ultra high voltage(UHV) substation post insulators,we established a flashover model of post insulators in serious icing condition based on the Obenaus concept.Moreover,we tested on the model by using solid layer method and applied water conductivity method,and compared the results.The comparison showed that the influences of surface salt density and icing water conductivity on the flashover voltage were independent from each other while both showing a negative exponent trend,and the degree of pollution had a linear relationship with the icing water conductivity.A model for calculation was established by considering only an equivalent icing representing the combined effects of pollution and applied icing water conductivity,which reduced the difficulty of computing.The model was adopted to calculate the flashover voltages of post insulators in serious icing,and the error of the computed results from the test results was less than 10%,proving the model to be accurate.
出处 《高电压技术》 EI CAS CSCD 北大核心 2013年第3期612-617,共6页 High Voltage Engineering
基金 国家电网公司科技项目(SG0923)~~
关键词 覆冰 支柱绝缘子 闪络电压 闪络模型 污秽 覆冰水电导率 特高压(UHV) icing post insulators flashover voltage flashover model pollution icing water conductivity UHV
  • 相关文献

参考文献13

二级参考文献179

共引文献239

同被引文献71

  • 1杨德全,韩庆书.二维粘性流动的边界元方法[J].水动力学研究与进展(A辑),1995,10(1):20-27. 被引量:10
  • 2黄新波,孙钦东,程荣贵,张冠军,刘家兵.导线覆冰的力学分析与覆冰在线监测系统[J].电力系统自动化,2007,31(14):98-101. 被引量:150
  • 3Scott J, Hankey W. Navier-stokes solution to the flowfield over ice accretion[J]. Journal of AircraR, 1988(25): 710-716.
  • 4杨德全,韩庆书.任意形状物体的Stokes绕流问题的数值计算[J].上海力学,1986(4):22-30.
  • 5Brun R J, Lewis W, Perkins P J, et al. Impingement of cloud droplets on a cylinder and procedure for measuring liquid-water content and droplet sizes in supercooled clouds by rotating multicylinder me- thod[R]. Washington DC, USA: National Advisory Committee for Aeronautics, 1955: 21-26.
  • 6Cansdale J T, Mcnaughton I I. Calculation of surface temperature and ice accretion rate in mixed water droplet/ice crystal cloud[R]. Hamp- shire, UK: Royal Aircraft Establishment, 1977: 7-13.
  • 7Bouchard G, Farzaneh M. Simulation of ice accumulation on trans- mission line cables based on time-dependent airflow and water droplet trajectory calculations[C]//23~ International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada: IEEE, 2004: 1-4.
  • 8Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2913-2939.
  • 9Makkonen L. Modeling of ice accretion on wires[J]. Journal of Cli- mate Applied Meteorology, 1984, 23(6): 929-939.
  • 10Macklin W C. The density and structure of ice formed by accretion[J]. Quarterly Journal of the Royal Meteorological Society, 1962, 88(375): 30-50.

引证文献5

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部