期刊文献+

基于改进K-means聚类的kNN故障检测研究 被引量:8

kNN Fault Detection Based on Improved K-means Clustering
在线阅读 下载PDF
导出
摘要 为了减少计算量,提高故障检测准确性,提出一种基于改进K-means聚类的kNN故障检测方法.首先通过改进K-means聚类将原始建模数据分成C个类,然后利用kNN分别对每个类建立模型.在每类的训练数据集合中找到每个样本的k个最近邻,计算k个最近邻距离的平方和.基于训练数据确定进行故障检测的阈值.对新的待检测样本,先判断属于哪一类,然后应用对应类的kNN模型进行故障检测.仿真结果表明:该方法不但可以提高过程故障检测的可靠性,而且大大缩短了故障检测时间. In order to reduce computation and improve the accuracy of fault detection, a new kNN fault detection method based on the improved K-means clustering is proposed. First the original modeling data is divided into C clusters according to the batch through improved K-means. And then the model for each cluster is builded by kNN. In each training data cluster, the k-nearest neighbors for each sample are found,and the squared distances are calculated. The threshold for fault detection based on the training data is determined. For an incoming new batch, we first determine which cluster it belongs to, and then apply the kNN model of the corresponding clusters for fault detection. Simulation results show that the proposed method not only improves the reliability of fault detection, but also greatly reduces the time.
出处 《沈阳化工大学学报》 CAS 2013年第1期69-73,共5页 Journal of Shenyang University of Chemical Technology
基金 国家自然科学基金资助项目(61034006 61174119)
关键词 故障检测 K—means KNN fault detection K-means kNN
  • 相关文献

参考文献7

二级参考文献86

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:36
  • 2Isermann R,Balle P.Trends in the application of modelbased fault detection and diagnosis of technical processes[J].Control Engineering Practice,1997,5(5):709-719.
  • 3Poul M F.Fault diagnosis in dynamic system using analytical and knowledge-based redundancy:a survey and some new results[J].Automatics,1990,26(3):459-474.
  • 4Janas G.Fault detection and diagnosis in engineering systems[M].New York:Marcel Dekker,1998.
  • 5Parthasarathy K,Jay H L.Diagnostic tools for multivariable model-based control systems[J].Industrial & Engineering Chemistry Research,1997,36(7):2725 -2738.
  • 6Anne R,Ali C.Statistical process monitoring and disturbance diagnosis in multivariable continuous proccsses[J].AIChE Journal,1996,42(4):995-1009.
  • 7Chiang L H,Russell E L,Braatz R D.Fault detection and diagnosis in industrial systems[M].London:SpringerVerlag,2001:354-363.
  • 8Venkat V,Raghunathan R,Surya N K.A review of process fault detection and diagnosis:part Ⅱ:qualitative models and search strategies[J].Computers & Chemical Engineering,2003,27(3):313-326.
  • 9Rabiner L R.A tutorial on hidden Markov models and selected applications in speech recognition[J].Proc.of the IEEE,1989,77(2):257-286.
  • 10Wenfu K,Robert H S,Christos G.Disturbance detection and isolation by dynamic principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.

共引文献89

同被引文献62

  • 1Hu Jinqiu Zhang Laibin Wang Zhaohui Liang Wei.Application of an Improved ISODATA Method to Pipeline Leak Detection[J].Petroleum Science,2007,4(2):97-104. 被引量:4
  • 2周东华.国内动态系统故障诊断技术的一些最新进展[J].自动化博览,2007,24(5):16-18. 被引量:7
  • 3WILLIAMS D,LIAO X J,XUE Y,et al_ On classification with incomplete data [J]. IEEE transactionson March 2007,29(3) : 427-436.
  • 4ANDREA M. Analyzing a randomized experiment with imperfect compliance and ignorable conditions formissing data: theoretical and computational issues [J]. Computational Statistics Data Analysis, 2004,46:493-509.
  • 5HYEKYUNG J,JOSEPH L S,BYUNGTAE S. A latent class selection model for non-ignorable missingdata [J], Computational Statistics and Data Analysis,2001,55: 802-812.
  • 6AMANDA N B,CRAGIG K E. An introduction to modern missing data analyses [J]. Journal of SchoolPsychology,2010,48: 5-37.
  • 7KRZYSZTOF P, MARCIN W,JOZEF K. Towards robustness in neural network based fault diagnosis [J].International Journal Applied Math Computation Science, 2008,18(4) : 443-454.
  • 8MOHAMED E A, ABDELAZIZ A Y, MOSTAFA A S. Fault diagnosis system for power transformers [J].JKAU: England Science,2007, 18(2) : 73-79.
  • 9YAN S,YIYUAN T,SHUXUE D, et al. Diagnose the mild cognitive impairment by constructingBayesian network with missing data [J], Expert Systems with Applications, 2011,38: 442-449.
  • 10TSHILIDZI M,CHAKRAVERTY S. Fault classification in structures with incomplete measured data usingautoassociative neural networks and genetic algorithm [J]. Current Science,2006,90(4) : 542-548.

引证文献8

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部