期刊文献+

基于遗传粒子群算法的飞行冲突解脱 被引量:9

Air conflict resolution based on genetic algorithm and particle swarm optimization
在线阅读 下载PDF
导出
摘要 飞行冲突解脱是空中交通流量控制与优化调度中的难点。针对遗传算法求解多机飞行冲突存在搜索速度慢、易陷入局部最优与早熟收敛的问题,提出一种遗传粒子群算法解决多机飞行冲突。该算法综合遗传算法的全局搜索能力和粒子群算法的记忆功能与快速收敛特性,能够有效地解决遗传算法求解飞行冲突存在的不足。仿真验证了该算法能够得出较好的结果,无论是在搜索速度还是在求解精度上都有明显的提高。 Flight conflict resolution is the key to control the air traffic flow and optimize flight scheduling. To enhance the search speed and avoid falling into the local optimization and premature convergence by Genetic Algorithm, a algorithm based on Genetic Algorithm and Particle Swarm algorithm is proposed to multi-vehicle confliction resolution. This algorithm inte- grates the global search capability of Genetic Algorithm and the memory function and fast convergence properties of Particle Swarm algorithm, which can effectively address the shortcomings of Genetic Algorithm. Experiments show the algorithm is able to draw good results and is better than Genetic Algorithm both in the search speed and search accuracy.
出处 《计算机工程与应用》 CSCD 2013年第7期263-266,共4页 Computer Engineering and Applications
关键词 空中交通 多机冲突解脱 遗传算法 粒子群算法 air traffic multi-vehicle confliction resolution Genetic Algorithm(GA) Particle Swarm Optimization(PSO)
  • 相关文献

参考文献11

  • 1Alliot J M, Gruber H, Joly G.Genetic algorithms for solving air traffic control conflicts[C]//Proceedings of the 9th Confer- ence on Artificial Intelligence for Applications, Orlando, FL, USA, 1993 : 338-344.
  • 2Burdun I Y.An AI situational pilot model for real-time appli- cations[C]//Proceedings of the 20th Congress on the Interna- tional Council of the Aeronautical Sciences, Sorrento, Napoli, Italy, September 8-13,1996:210-237.
  • 3Ghosh R, Tomlin C.Maneuver design for multiple aircraft conflict resolution[C]//Proceedings of the American Control Conference, Chicago, Illinois, 2000,9 : 672-676.
  • 4靳学梅,韩松臣,孙樊荣.自由飞行中冲突解脱的线性规划法[J].交通运输工程学报,2003,3(2):75-79. 被引量:23
  • 5裴志刚,李华星,王庆胜.模拟退火遗传算法在飞行冲突解脱中的应用[J].交通与计算机,2005,23(1):115-117. 被引量:7
  • 6中国民航局.CCAR-91-R2一般运行和飞行规则[S].2007-11-22.
  • 7Holland J H.Adaption in nature and artificial system[M]. Ann Arbor:The University of Michigan Press, 1975.
  • 8Kennedy J, Eberhart R C.Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995.
  • 9陈自郁,何中市,何静媛.一种求解集合组合问题的离散粒子群优化模型[J].华南理工大学学报(自然科学版),2010,38(4):141-146. 被引量:6
  • 10魏静萱,王宇平.求解约束优化问题的改进粒子群算法[J].系统工程与电子技术,2008,30(4):739-742. 被引量:13

二级参考文献35

共引文献45

同被引文献64

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部