期刊文献+

基于小波提升算法的脑电节律提取 被引量:3

EEG extraction based on wavelet lifting scheme
在线阅读 下载PDF
导出
摘要 小波变换在信号处理中有着广泛的应用,能同时分析时域和频域方面的信息,但是传统的小波变换依赖于傅立叶变换,有大量的卷积运算,运算速度较慢.该文讨论了第二代小波变换的原理,并采用它来处理脑电信号.提升算法作为构造第二代小波的关键技术,通过预测确定高频信息,更新后得到正确的低频信息,它不依赖于傅立叶变换,大大提高了运算速度.通过分析提升算法的基本原理,用第二代小波变换实现了对脑电信号的节律(δ、θ、α、β)提取,并得到了令人满意的效果. Wavelet transform is widely applied in signal processing, which can analyze time domain or frequency domain information. But the traditional wavelet transform depends on Fourier transform, and its realization is based on a large amount of convolution computation,leading to the low operation speed. This paper discusses the principles of second generation wavelet transform, and applies it to process the electroeneephalo-graph (EEG). Lifting scheme is the key technique to construct the second generation wavelet transform. High-frequency information is determined by predicting, and the correct low-frequency information is obtained through update. Lifting scheme does not depend on the Fourier transform, thus greatly improves the speed of operation. By analyzing the basic principles of lifting scheme, we extracted the four rhythms of EEG through second generation wavelet transform, and got satisfactory re- sults.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2013年第1期60-63,共4页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 广东省科技计划项目(2009B08-0701007)
关键词 第二代小波变换 脑电信号 提升算法 节律提取 second generation wavelet transform EEG lifting scheme rhythm extraction
  • 相关文献

参考文献7

  • 1邵晨曦,卢继军,周颢.基于小波变换的脑电图癫痫波形检测[J].生物医学工程学杂志,2002,19(2):259-263. 被引量:12
  • 2Adeli H, Zhou Z Q, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform [ J ]. Neu- rosci Methods ,2003,123 ( 1 ) :69-87.
  • 3Oropesa E, Cycon H L, Jobert M. Sleep stage classifica- tion using wavelet transform and neural network [ R ]. IC- SI Technical Report, TR-99-008,1999.
  • 4宦飞,郑崇勋,刘峰,黄远桂.利用小波级数检测睡眠EEG中的K-复合波[J].北京生物医学工程,2000,19(1):1-5. 被引量:1
  • 5Sweldems W. The lifting scheme:A construction of sec- ond generation wavelet[ J ]. SLAM Journal on Mathemati- cal Analysis, 1998,29 (2) :511-546.
  • 6Geva A B,Kerem D It. Fotccasting gcncalized cpileplicseizures from the EEG signal by wavelet analysis and dy- namic unsupervised fuzzy clustering [ J ]. IEEE Transac- tions on Biomedical Engineering, 1998, 45 ( 10 ) : 1205-1216.
  • 7沈民奋,孙丽莎,沈凤麟.基于小波变换的动态脑电节律提取[J].数据采集与处理,1999,14(2):183-186. 被引量:14

二级参考文献13

  • 1李勇.脑电信号现代分析方法的发展[J].国外医学(生物医学工程分册),1996,19(4):199-202. 被引量:10
  • 2沈民奋,现代随机信号与系统分析,1998年
  • 3李勇,国外医学生物医学工程分册,1996年,19卷,4期,199页
  • 4Tseng S,Med Eng Phys,1995年,17卷,1期,71页
  • 5PrincipeJC,etal.SAMICOS-Asleepanalyzingmicrocomputersystem.IEEETrans.ontheBME,1986,33(10):935~941
  • 6JansenBH,ArtificialneuralnetsforK-complexdetection.IEEEEnginMedandBio,1990,9:50~53
  • 7HaoYL,etal.ImprovedprocedureofcomplexdemodulationandanapplicationtofrequencyanalysisofSleepspindlesinEEG.MedBioEngComput,1993,6:406~412
  • 8RaySR,etal.Computersleepstagescoring——anexpertsystemapproach.IntJBio-MedicalComput,1986,19:43~61
  • 9MallatSG.Atheoryformultiresolutionsignaldecomposition:waveletrepresentation.IEEETransOnPAMI,1989,11(7):674
  • 10DaubechiesI.Orthogonalbasesofcompactlysupportwavelet.CommonPureandApplMath,1988,909 (1999-01-14收稿,1999-02-08修回)

共引文献23

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部