期刊文献+

管状特性和主动轮廓的3维血管自动提取 被引量:8

Three dimensional vessel extraction model based on tubular characters and active contour model
原文传递
导出
摘要 针对血管树结构的复杂性,提出了基于管状特性和主动轮廓的3维血管的自动提取模型。该模型充分利用管状特性,包括血管的先验灰度分布、多尺度血管矢量场和血管几何曲率特征,把这些信息表示为主动轮廓模型的能量项并最小化,得到包括3个主要速度项的迭代方程:基于区域竞争和先验灰度的主动轮廓、血管矢量场和多曲率策略。基于区域竞争和先验灰度的主动轮廓可以准确健壮地提取大的血管;由Hessian矩阵主元分析得到的血管矢量场,可以驱使主动轮廓演化到细小血管内部;最小主曲率和平均曲率的多曲率策略,可以降噪平滑血管的同时,充分保持血管的几何形状。通过对肝脏、冠状动脉和肺部血管的分割,表明该模型可以自动地对整个血管树进行提取,不需要太多的预处理和后处理,是一种有效的血管自动提取模型。 In this paper, we propose a nevo model for three dimensional vessel extraction. The model makes full use of tubular properties, which includes prior intensity of vessels, second tensor of tubular structures, and geometric curvatures. All this information makes the energy terms of the active contour model and thus leads to three forces of the iterative equation : the region competition force using prior intensity, the tubular vector field force and the dual curvature force. The first force help extracting big vessels accurately and robustly, the second force makes it possible to extract thin and weak vessels, and the last one is able to remove noise without changing the tubular geometry. As shown in the experiments extracting liver vessels, coronary, and lung vessels, the proposed model is able to extract the whole vessel trees automatically, accurately, and robustly.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第3期290-298,共9页 Journal of Image and Graphics
基金 国家重大科技专项(2011ZX02505-002) 上海市科委项目(10DZ1500600)
关键词 血管 分割 HESSIAN矩阵 主动轮廓 肝脏 冠状动脉 vessel segmentation Hessian matrix active contour model liver Coronary
  • 相关文献

参考文献21

  • 1Frangi A F, Niessen W J, Vincken K I,,et al. Mulliscale vessel enhancement filtering[ C ]// Proceedings of Medical hnage Com- puting and Computer-Assisted Intervention. Berlin: Springer Verlag. 1998 : 130-137.
  • 2Sato Y, Nakajima S, Shiraga N, et al. Three-dimensional multi- scale line filter for segmentation and visualization of curvilinear structures in medical images [ J ]. Medical Image Analysis, L998, 2(2) : 143-168.
  • 3Manniesing R, Viergever M A, Niessen W J. Vessel enhancing diffusion- a scale space representation of vessel structmes [J]. Medical Image Analysis, 2006, 10(6) : 815-825.
  • 4Aylward S R, Bullitt E. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extrac- tion [ J ]. IEEE Transactions on Medical Imaging, 2002, 21 (2) : 61-75.
  • 5Yim P J, Choyke P L, Summers R M. Gray-scale skeletonization of small vessels in magnetic resonance angiography [ J ]. IEEE Transactions on Medical Imaging, 2000, 19(6) : 568-576.
  • 6Lorigo L M, Faugeras O D, Grimson W E L, et al. CURVES: curve evolution for vessel segmentation[ J]. Medical Image Ana- lysis, 2001, 5(3): 195-206.
  • 7Yah P, Kassim A A. Segmentation of volumetric MRA images by using capillary active contour [ J ]. Medical Image Analysis, 2006, 10(3) : 317-329.
  • 8Bemmel C M, Spreeuwers L J, Viergever M A, et al. Level-set- based artery-vein separation in blood pool agent CE-MR angio- grams [ J ]. IEEE Transactions on Medical Imaging, 2003, 22(10) : 1224-1234.
  • 9Manniesing R, Vehhuis B K, Van Leeuwen M S, et al. Level set based cerebral vasculature segmentation and diameter quantifica- tion in CT angiography [ J ]. Medical Image Analysis, 2006, 10(2) : 200-214.
  • 10Suri J S, Liu K C, Reden L, et al. A review on MR vascular image processing algorithms: acquisition and prefiltering: part I [J]. IEEE Transactions on Information Technology in Biomedi- cine, 2002, 6(4) : 324-337.

同被引文献136

  • 1彭进业,郝重阳,齐华,齐敏.基于多尺度梯度矢量场GAC模型的MR医学图像分割[J].中国图象图形学报,2007,12(7):1214-1217. 被引量:3
  • 2章毓晋.图像处理与分析[M].北京:清华大学出版社,1999..
  • 3BOYKOV Y, JOLLY M. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images[ C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscat- away: IEEE, 2001:105 - 112.
  • 4BAUER C, POCK T, SORANTIN E, et al. Segmentation of inter- woven 3 D tubular tree structures utilizing shape priors and graph cuts [J]. Medical Image Analysis, 2010, 14(2) : 172 - 184.
  • 5PENG B, ZHANG L, ZHANG D, et al. Image segmentation by iter- ated re,on merging with localized graph cuts[ J]. Pattern Recogni- tion, 2011, 44(10): 2527-2538.
  • 6GROSGEORGE D, PETITJEAN C, DACHER J N, et aL Graph cut segmentation with a statistical shape raodel in cardiac MRI[ J]. Computer Vision and Image Understanding, 2013, 117 (9) : 1027 - 1035.
  • 7LERME N, LETOCART L, MALGOUYRES F. Reduced graphs for rain-cut/max-flow approaches in image segmentation[ J]. Elec- tronic Notes in Discrete Mathematics, 2011, 37:63 -68.
  • 8SAKALIHASAN N, I.IMET R, DEFAWE O. Abdominal aortic aneurysm[J]. The Lancet,2005,365(9470) : 1577-1589.
  • 9BOYKOV Y, FUNKA-LEA G. Graph cuts and efficient ND image segmentation[J]. International Journal of Computer Vi sion,2006,70(2) :109-131.
  • 10LI C, KAO C Y, GORE J C, et al. Implicit active contours driven by local binary fitting energy[C]//Computer Vision and Pattern Recognition. Minneapolis, Minnesota: IEEE,2007:l-7.

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部