期刊文献+

三角网格曲面角点的鲁棒性检测算法 被引量:1

A Robust Algorithm for Detecting Corners on Triangular Mesh Surfaces
在线阅读 下载PDF
导出
摘要 为有效检测三角网格曲面上的角点特征,提出一种基于最小主曲率的角点检测算法.首先通过计算网格顶点处的最小主曲率,利用加权最小主曲率定义角点特征函数,并计算角点特征值;然后利用迭代阈值法自动产生检测阈值,以去除噪声和特征不明显的角点;最后采用非极大值抑制法消除局部邻域内的角点聚簇获取特征明显的角点.在此基础上,在多个尺度下分别计算每个网格顶点处的角点特征值,并通过加权将其合并成多尺度角点特征值,新的角点特征值使得角点检测算法具有较高的稳定性和鲁棒性.通过重复检测率实验和部分重叠曲面的配准实验,验证了文中算法的有效性与实用性. A new the minimum princi algorithm is proposed to detect corners on the triangular mesh surfaces. Based on pal curvature, a corner feature function at each vertex is evaluated, which accounts for the variance of minimum principal curvature within a local area. Then an iteratively determined threshold of the corner feature function is applied to remove noisy or faint corners. Further, the nonmaxima suppression method is employed to extract the distinct corners from local clusters of candidates. To make the corner detection algorithm more robust, the above process is conducted on mesh vertices under different scales to form a multi-scale feature representation at each corner. Experiments on repeated corner detection and registration of partially overlapping surfaces demonstrate the effectiveness and robustness of the proposed algorithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第11期1545-1550,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(50875130) 博士点基金(200802870016) 江苏省支撑计划(BE2008136)
关键词 网格曲面 角点检测 最小主曲率 多尺度特征表示 Mesh surfaces corner detection minimum principal curvature multi-scale featurerepresentation
  • 相关文献

参考文献5

二级参考文献20

  • 1罗先波,钟约先,李仁举,周绿.基于标志点的多视角三维测量数据配准技术的研究[J].计量技术,2004(5):20-22. 被引量:8
  • 2潘小林,张丽艳,揭裕文,朱延娟.三维曲面部分匹配的算法研究[J].南京航空航天大学学报,2004,36(5):544-549. 被引量:13
  • 3许晓栋,赵毅,李从心.结构光测量中多视拼合技术与算法实现[J].机床与液压,2005,33(10):137-140. 被引量:6
  • 4张辉,张丽艳,陈江,赵转萍.基于平面模板自由拍摄的双目立体测量系统的现场标定[J].航空学报,2007,28(3):695-701. 被引量:35
  • 5Li X K, Wee W G. Range image fusion for object reconstruction and modeling [C] //Proceedings of the 1st Canadian Conference on Computer and Robot Vision, London, 2004:306-314
  • 6Curless B, Levoy M. A volumetric method for building complex models from range images [J]. Computer Graphics, 1996, 30(4): 303-312
  • 7Hilton A, Stoddart A J, Illingworth J, st al. Implicit surface based geometric fusion[J].Computer Vision and Image Understanding, 1998, 69(3): 273-291
  • 8Rocchini C, Cignoni P, Ganovelli F, et al. The marching intersectiorts algorithm for merging range images[J]. The Visual Computer, 2004, 20(2/3): 149-164
  • 9Park S Y, Subbarao M. Automatic 3D model reconstruction based on novel pose estimation and integration techniques[J]. Image Vision Computing, 2004, 22(8): 623-635
  • 10Sun Y, Paik J, Koschan A, et al. Surface modeling using multi view range and color images [J]. Integrated Computer Aided Engineering, 2003, 10(1) : 37-50

共引文献14

同被引文献10

  • 1MEYER M, DESBRUN M, SCHRODER P, et al. Discrete differen- tiM-geometry operators for triangulated 2-manifolds [ C ]//Proc of Visualization and Mathematics Conference. Berlin: Springer-Verlag, 2003:35-57.
  • 2OSADA R, FUNKHOUSER T, CHAZELLE B,et al. Matching 3D models with shape distributions [ C ]//Proc of International Conference on Shape Modeling and Applications. 2001:154-166.
  • 3COLBRYD, STOCKMAN G, JAIN A. Detection of anchor points for 3D face verification [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005: 118-125.
  • 4LEE C H, VARSHNEY A,JACOBS D W. Mesh saliency[J]. AGM Trans on Graphics,2005,24(3 ) :659-666.
  • 5SCHLATTMANN M. Intrinsic features on surfaces[ C]//Proc of the 10th Central European Seminar on Computer Graphics. 2006: 169- 176.
  • 6ZHOU Z D,AI Q S,HU Q. A novel feature points selection algorithm for 3 D triangular mesh models[ C ]//Proc of the 9th International Conference on Signal Processing. 2008:1023-1026.
  • 7WALTER N, AUBRETON O,YOHAN D. Susan 3D operator, principal saliency degrees and directions extraction and a brief study on the robustness to noise [ C ]//Proc of IEEE International Conference on Image Processing. 2009:3529-3532.
  • 8NOVATNACK J, NISHINO K, SHOKOUFANDEH A. Extracting 3D shape features in discrete scale space [ C ]//Proc of the 3rd International Symposium on 3D Data Processing, Visualization and Transmis- sion. 2006:946-953.
  • 9SMITH S M, BRADY M. Susan : a new approach to low level image rocessing [ J ]. International Journal of Gomputer Vision, 1997,23 ( 1 ) :45-78.
  • 10ZHOU Yuan-feng, ZHANG Cai-ming, GAO Shah-shah. A quasiLaplacian smoothing approach on arbitrary triangular meshes [ C ]// Proc of the 10th IEEE International Conference on Computer-Aided Design and Computer Graphics. 2007:282-287.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部