期刊文献+

基于TinyOS的无线热舒适度测量系统 被引量:1

A wireless thermal comfort measurement system based on TinyOS
在线阅读 下载PDF
导出
摘要 单一的室内环境温度作为被控变量的控制系统,难以满足人们对室内环境舒适性以及节能的要求。开发了基于TinyOS操作系统的无线热舒适度测量系统,无线传感网络节点组成多跳网络,用以采集温湿度等室内环境参数,并实时计算热舒适度PMV(Predicted Mean Vote)指标值。分析了测量误差产生的主要原因,并利用超闭球CMAC(Hyperball CMAC,HCMAC)神经网络进行了误差补偿,实验结果表明,补偿后的PMV精度得到了明显的改善。该系统可为热环境舒适度实时控制提供便捷的无线数据采集和有效的PMV指标测量方法。 A control system with only one controlled variable like environmental temperature can not satisfy the requirement of indoor environmental comfort and energy efficiency. A wireless comfort measurement system based on TinyOS operating system has been developed. The measurement system is a muti-hop network comprising many wireless sensor network nodes acquiring indoor environmental variables such as temperature and relative humidity. The PMV (Predicted Mean Vote) index is calculated according to the above thermal variables. Measurement error is analyzed and error compensation based on Hyperball CMAC (HCMAC) neural network is carried out. The experimental results demonstrate that the PMV measurement accuracy has been improved markedly after compensation. The developed system can facilitate convenient and fast wireless data acquisition and effective PMV calculation for real-time control of indoor thermal environments.
出处 《山东建筑大学学报》 2012年第5期451-454,460,共5页 Journal of Shandong Jianzhu University
基金 国家自然科学基金项目(61074070 61004005) 山东省科技攻关项目(2009GG10001029)
关键词 无线传感网络 TINYOS 热舒适度 PMV HCMAC wireless sensor network TinyOS thermal comfort PMV I-ICMAC
  • 相关文献

参考文献9

  • 1段培永,郭东东,李慧,段晨旭.一种基于数据的夏季居住环境热舒适度控制方法[J].山东建筑大学学报,2011,26(1):1-7. 被引量:9
  • 2廖传善,叶振猷,卢紫珊.空调设备与系统的节能控制[M].北京:中国建筑工业出版社,1984.
  • 3Tse W. L. and Chan W. L. , A distributed sensor network for measurement of human thermal comfort feelings [ J ]. Sensors and Actuators A, 2008, 144(2) : 394 -402.
  • 4Tse W. L. , and Chan W. L. , Real-time measurement of thermal comfort by using an open networking technology [ J ]. Measurement, 2007, 40(6): 654-664.
  • 5Kumar A. , Singh I. P. , and Sud S. K. , Thermal Comfort Feelings Assessment Based on Digital Signal Processor [ J ]. International Journal of Recent Trends in Engineering, 2009, 1 (5) : 159 -162.
  • 6Kumar A. , Singh I. P. , and Sud S. K. , An approach towards development of PMV based thermal comfort smart sensor [ J ]. International Journal on Smart Sensing and Intelligent Systems, 2010, 3(4) : 621 -642.
  • 7丁秀娟.浅谈衣服热阻对人体热舒适的影响[J].建筑节能,2009,37(2):27-29. 被引量:16
  • 8段培永,邵惠鹤.一种CMAC超闭球结构及其学习算法[J].自动化学报,1999,25(6):816-819. 被引量:17
  • 9段培永,任化芝,邵惠鹤.超闭球CMAC的性能分析及多CMAC结构[J].自动化学报,2000,26(4):563-567. 被引量:17

二级参考文献16

  • 1王飞跃.关于复杂系统研究的计算理论与方法[J].中国基础科学,2004,6(5):3-10. 被引量:99
  • 22001 ASHRAE Handbook,Fundamentals (SI),American Society of Heating,Refrigerating and Air-conditioning,Engineers,Inc.,1791 Tullie Circle,N.E.,Atalanta,GA 30329.
  • 3Yang I H, Yeo M S, Kim K W. Application of artificial neural network to predict the optimal start time for heating system in building [ J ]. Energy Conversion and Management, 2003,44 ( 17 ) : 2791 - 2809.
  • 4Fanger P O. Thermal comfort: analysis and applications in envi- ronmental engineering[ M]. New York: McGraw-Hill, 1972. 109 -112.
  • 5书生.十种经典的软件滤波方法[EB/OL].http://www.tuxw.cn/blog/article.asp?id=140,2007-12-29.
  • 6Chiang C T,Neural Networks,1996年,9卷,7期,1199页
  • 7王立新,自适应模糊系统与控制.设计与稳定性分析,1994年
  • 8Chiang Changtsan,Neural Networks,1996年,9卷,7期,1199页
  • 9欧阳楷,陈卉,周萍,周琛.神经计算中坐标变换的网络模型(CMAC)的泛化特性[J].自动化学报,1997,23(4):475-481. 被引量:16
  • 10王昭俊.ASHRAE冬季年会召开[J].暖通空调,2008,38(3):94-94. 被引量:1

共引文献50

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部