期刊文献+

协方差矩阵输入的DOA估计方法 被引量:3

Method of Direction of Arrival Estimation Based on Covariance Matrix
在线阅读 下载PDF
导出
摘要 利用支持向量回归机对非线性函数的拟合能力,将波达方向(DOA)估计问题转化为样本的智能学习问题。提取已知信号的协方差矩阵上三角部分作为样本输入特征,构建波达方向估计模型,获取复杂函数的拟合能力,达到对未知信号波达方向估计的目的。仿真实验表明该方法具有很高的估计精度和速度,在低信噪比和通道存在相位误差的情况下具有较强的适应能力,性能优于RBF神经网络法,具有较大的工程应用价值。 This paper transfers the problem of DOA estimation into a samples intelligent learning problem by using the approxima- ting capability of support vector regression for nonlinear functions . The upper triangular half of the covarianee matrix of know- ing direction signals is extracted to form training set which is used to construct DOA estimation model. The DOA estimation model can get the approximating capability for nonlinear functions to estimate the DOA. The experiment results show that the proposed method has a high estimation precision and speed,and has an advantage of preferably robust in the condition of low signal-to-noise and phase error in the channels. The performance is better than the RBFNN method and has a broad application future.
机构地区 中国人民解放军
出处 《无线电工程》 2013年第2期34-37,共4页 Radio Engineering
关键词 协方差矩阵 支持向量机 来波方位 covariance matrix support vector machine direction of arrival
  • 相关文献

参考文献11

  • 1GUO W,QIU T S,TANG H. Performance of RBF Neural Networks for Array Processing in Impulsive noise Environment[J].Digital Signal Processing,2008,(02):168-178.
  • 2WANG M,YANG S,WU S. A RBFNN Approach for DOA Estimation of Ultra Wideband Antenna Array[J].Neurocomputing,2008,(06):631-640.doi:10.1016/j.neucom.2007.08.023.
  • 3VIGNESHWARAN S,SUNDARARAJAN N,SARATCHANDRAN P. Direction of Arrival (DOA) Estimation Under Array Sensor Failures Using a Minimal Resourse Allocation Neural Network[J].IEEE Transaction on Antennasand Propagation,2007,(02):334-343.
  • 4DOURADO O D,DORIA A D. Determination of Multiple Direction of Arrival in Antennas Arrays with Radial Basis Functions[J].Neurocomputing,2006,(03):55-61.
  • 5MATSUMOTO K. Experiments of Direction Finder by RBF Neural Network with Post Processing[J].IEEE Electronics Letters,2005,(10):55-60.
  • 6严颂华,吴世才,吴雄斌.基于神经网络的高频地波雷达目标到达角估计[J].电子与信息学报,2008,30(2):339-342. 被引量:17
  • 7于斌,尹成友,黄冶.阵列误差影响下的RBF神经网络波达方向估计[J].微波学报,2007,23(6):21-25. 被引量:12
  • 8安冬,王守觉.基于仿生模式识别和PCA/ICA的DOA估计方法[J].电子学报,2004,32(9):1448-1451. 被引量:14
  • 9VAPNIK V N. The Nature of Statistical Learning Theory[M].New York:springer-verlag,1995.
  • 10VAPNIK V N. Statistical Learning Theory[M].New York:wiley,1998.

二级参考文献29

  • 1杨超,邱文杰.自适应天线中阵元间互耦的校正[J].电子学报,1993,21(3):58-62. 被引量:19
  • 2王哲,李衍达,罗发龙.一种用于PCA与MCA的神经网络学习算法[J].电子学报,1996,24(4):12-16. 被引量:6
  • 3王兰美,廖桂生,王洪洋.矢量传感器误差校正与补偿[J].电子与信息学报,2006,28(1):92-95. 被引量:7
  • 4[1]Fisher.Contributions to Mathematical statistics[M].New York:J Wiley,1952.
  • 5[2]陈季镐(美).统计模式识别[M].邱炳章,邱华,译.北京:北京邮电学院出版社,1989.
  • 6[3]Vapnik and Chervonenkis.Theory of Pattern Recognition[M].Nauka:Moscow,1974.
  • 7[4]Adimir N Vapnik.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
  • 8[9]斯华龄(美).智能视觉图像处理[M].上海:上海科技教育出版社,2002.
  • 9Bell K, Capetanakis J. Direction-of-arrival estimation using superresolution techniques with multiple beam antennas. AIAA Inter Commun Sat Sys Conf, 1992,43 -52
  • 10O'Donnell T H, Southall H L, Simmers J A. Neural network antenna processing for detection and direction finding. IEEE International Radar Conference, 1995,213 - 218

共引文献31

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部