期刊文献+

一类时滞微分方程解的振动准则 被引量:10

Oscillation Criteria of Solutions for Delay Differential Equations
原文传递
导出
摘要 本文建立了一类时滞微分方程一切解振动的必要充分条件 In the present paper we obtain the necessary and sufficient conditions for all solutions of a class of delay differential equations to be oscillatory.
作者 安冉
出处 《数学的实践与认识》 CSCD 2000年第3期310-314,共5页 Mathematics in Practice and Theory
关键词 时滞微分方程 振动 充要条件 delay differential equations oscillation necessary and sufficient conditon
  • 相关文献

参考文献3

  • 1Arino O, Gyori I, Jawhari A. Oscillation criteria in delay equations. J. Differential Equations,1984,53:115~123.
  • 2HuntBR,YorkeJA.Whenallsolutionsofx'=-∑qi(t)x(t-Ti(t))Oscillate.J.DifferentialEquations,1984,53:139-145.
  • 3Ladas G, Sficas Y G, Stavroulakis I P. Necessary and sufficient conditions for oscillations. Amer Math Monhly,1983,90:637~640.

同被引文献49

  • 1关开中,王奇生,廖基定.OSCILLATION CRITERIA OF SOLUTIONS FOR A CLASS OF DELAY DIFFERENTIAL EQUATIONS WITH POSITIVE AND NEGATIVECOE FFICIENTS[J].Annals of Differential Equations,2004,20(3):235-242. 被引量:1
  • 2刘安平,王国庆,刘中全.中立双曲型时滞偏微分方程解振动的充要条件[J].工科数学,1997,13(3):40-42. 被引量:16
  • 3崔宝同,俞元洪,林诗仲.具有时滞的双曲型微分方程解的振动性[J].应用数学学报,1996,19(1):80-88. 被引量:76
  • 4Gyori I., Ladas G.. Oscillation theory of delay differential equations with application[ M]. Clarendon press, oxford, 1991.
  • 5Guan Kaizhong, Shen Jianhua. On first- order neutral differention equations of Euler form with unbounded delays[ J ]. Appl. Math. Comput,2(X)7,189,1419 - 1427.
  • 6Bere L. Zansky, Braverman E. Oscillation criteria for a linear neutral differential equations[ J ]. Math. Anal. and Appl, 2003,286,601 - 617.
  • 7[5]Mishev D.P.and D.D.Bainov.Oscillatory properties of the solutions of hyperbolic differential equations of neutral type[J].Appl.Math.Comput, 1988(28):97-111.
  • 8[6]刘安平, 曹少琛.Oscillations of hyperbolic partial differential equations of neutral type[J].数学季刊, 2002, 17(2): 27-32.
  • 9[9]Mengxing He, Anping Liu. The oscillations of hyperbolic functional differential equations [J].Applied Mathematics and Computation, 142:205-224.
  • 10Arino O, Gyri I, Jawhari A. Oscillation oriteria in delay equations[J]. Differential Equations,1984,53:115- 123.

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部