期刊文献+

时滞脉冲双曲型泛函微分方程解的振动性 被引量:1

Oscillation Behavior of Solution for Delay Impulsive Hyperbolic Functional Differential Equations
在线阅读 下载PDF
导出
摘要 本文研究脉冲双曲型泛函微分方程解的振动性质,给出了解振动的充分条件. The authors discuss the oscillation behavior for impulsive hyperbolic functional differential equations with two different boundary conditions, and obtain several oscillation criteria.
出处 《洛阳师范学院学报》 2005年第2期18-20,101,共4页 Journal of Luoyang Normal University
基金 河南省自然科学基金资助项目(2004110008)
关键词 脉冲 Robin边界条件 振动性 impulsive Robin boundary condition oscillation
  • 相关文献

参考文献11

  • 1Luo J. W. Osillation of hyperbolic partial differential equations with impulsives [ J ]. J. Comput. Appl. Math,2002, (133): 309 -318.
  • 2Cui B. T. Liu Y. Q. Deng F. Q. Someosillation problems for impulsive hyperbolic differential systems with several delays[J]. J. Comput. Appl. Math. 2003, (146): 667 -679.
  • 3Liu Anping, Xiao Li, Liu Ting, Oscillations of nonlinear impulsive hyperbolic equations with seeral delays, Electronic Journal of Differential Equations [ J ]. 2004.(24): 1 -6.
  • 4张立琴.具有不依赖于状态脉冲的双曲型偏微分方程的振动准则[J].数学学报(中文版),2000,43(1):17-26. 被引量:37
  • 5Yan J. R. Oscillation properties of a second-order impulsive delay differential equation. [ J] Computers Math. Applic. 2004, (47): 253 -258.
  • 6Luo Y. W. Deng L. H. Osillation Behavior of Solutions for a Class of Delay Impulsive Hyperbolic Functional Differential Equations [ J ]. Journal of Sichuan University.2004, 41(1): 46-51.
  • 7Liu A.P. Xiao L. Liu T. Necessary and sufficient conditions for oscillations for lscillations of parabolic neutral partial diferential equations [ J ]. Annal of Differential Equation. 2003, 19(3): 337 -342.
  • 8刘安平.非线性带强迫项双曲型时滞微分方程解的振动性质[J].大学数学,1996,17(1):1-4. 被引量:3
  • 9刘安平,肖莉,刘婷.非线性中立双曲型泛函微分方程解的振动判据[J].应用泛函分析学报,2002,4(1):69-74. 被引量:7
  • 10马晴霞,肖莉,薛秋条.抛物型时滞偏微分方程解振动的充要条件[J].武汉理工大学学报,2004,26(9):87-89. 被引量:6

二级参考文献17

共引文献45

同被引文献4

  • 1薛秋条,徐德义,刘安平.非线性脉冲时滞双曲偏微分方程的振动性[J].武汉理工大学学报,2005,27(6):52-54. 被引量:8
  • 2[2]LIU An-ping,LI Xiao,LIU Ting.Oscillation of solutions of nonlinear impulsive hyperbolic equations with several delays[J].Electronic Journal of Differential Equations,2004,24 (1):1-6.
  • 3[3]LOU Y W.DENG L H.Oscillation behavior of solutions for a class of delay impulsive hyperbolic functional differential equations[J].Journal of Sichuan university,2004,41 (1):46-51.
  • 4燕居让,闫卫平.脉冲时滞偏微分方程解的振动性[J].山西大学学报(自然科学版),2002,25(2):95-98. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部