期刊文献+

资源受限项目调度问题的改进文化微粒群算法求解 被引量:4

Improved cultural particle swarm optimization algorithm for solving resource-constrained project scheduling problem
在线阅读 下载PDF
导出
摘要 为了克服标准微粒群算法在求解资源受限项目调度问题上存在的早熟现象,提出一种改进的文化微粒群算法。该算法框架基于微粒群算法的主群体空间和文化算法的知识空间,两种空间具有各自的群体并可独立并行演化,形成双演化双促进机制,提高了算法的全局搜索能力和运行效率。同时为了避免文化算法知识空间自我演化限制,引入遗传算法的演化机制来改进知识空间的演化操作。通过具体的算例比较,验证了提出的改进文化微粒群算法在求解资源受限项目问题时的有效性。 In order to overcome the premature phenomen of standard particle swarm optimization(PSO) for solving RCPSP,this paper proposed an improved cultural particle swarm optimization(ICPSO)algorithm.The framework of the proposed algorithm was based on the main population space of the PSO and the knowledge space of the cultural algorithm(CA),where two spaces having respective groups as well as evolving independently,and formed the mechanism of "double evolution,double promotion".At the same time,in order to avoid the restriction of self-evolving by the knowledge space of the CA,it introduced the evolutinary mechanism of the genetic algorithm(GA)into the knowledge space to improve its evolutionary operations.A specific comparing example verifies the validity of the ICPSO for solving the RCPSP.
出处 《计算机应用研究》 CSCD 北大核心 2013年第1期90-93,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(70871088)
关键词 文化微粒群算法 资源受限项目调度问题 知识空间 主群体空间 cultural particle swarm optimization(CPSO) algorithm resource-constrained project scheduling problem(RCPSP) knowledge space main population space
  • 相关文献

参考文献13

  • 1BLAZEWICZ J LENSTRA J K, KAN A H G R. Scheduling subject to resource constraints:classification and complexity [ J ]. Discrete Ap- plied MathomaUes, 1983,5( 1 ) :11-24.
  • 2RODRIGUES S B, YAMASHITA D S. An exact algorithm for minimi- zing resource availability costs in project scheduling [ J ]. Europoan Journal of Operationa! Rosoareh,2010,206(3) : 562-568.
  • 3MENDES J J M, GONCALVES J F, RESENDE M G C. A random key based genetic algorithm for the resource constrained project scheduling problem[J]. Computers & Operations Research,2009,36 ( 1 ) : 92,109. ' " .
  • 4MONTOYA-TORRES J :R; GUTIERREZ-FRANEO E, PIRACHICAN- MAYORGA C, Project scheduling with limited resources using a ge- netic algorithm [ J ]. International Journal of Project Management, 2010,28(6) :619-628.
  • 5SHUKLA S K,SON Y:J,TIWARI M K. Fuzzy-based adaptive sample- sort simulated annealing for resource-constrained project scheduling [ J ]. The International doumaF of AdvanCed' Manufacturing Technology ,2008,36(9-10) : 982-995.
  • 6HE Zheng-wen, WANG Neng-ming,JIA Tao,et al. Simulated annealing and tabu search for multi-mode project payment scheduling[J] .Euro- pean Journal of Operational Research,2009,198(3) : 688-696.
  • 7JARBOUI B, DAMAK N, SIARRY P, et al. A combinatorial particle swarm optimization for solving multi,mode resource-eonstrainedproject scheduling problems[ J ]. Applied Mathematics and Computation, 2008,195( 1 ) :299-308.
  • 82HEN R M, WU Chun-lun, WANG C M,et al. Using novel particle warm optimization scheme to solve resource-constrained seheduling ?roblem in PSPLIB [ J ]. Expert Systems with Applications, 2010, 37(3) 1899-:19!0. ',.
  • 9寿涌毅,傅奥.多目标资源受限项目调度的多种群蚁群算法[J].浙江大学学报(工学版),2010,44(1):51-55. 被引量:21
  • 10REYNOLDS R G, MICHAI.EWICZ Z, CAVARETrA M. using cul- tural algorlkhms for comtraint handling in GENOCOP[ C ]//Proc of the 4th Annual Conference on Evolutionary Programming. Cambrige: MIT Press, 1995:298-305.

二级参考文献54

共引文献64

同被引文献43

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:931
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1334
  • 3陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:316
  • 4刘士新,宋健海,唐加福.基于关键链的资源受限项目调度新方法[J].自动化学报,2006,32(1):60-66. 被引量:64
  • 5王奕首,艾景波,史彦军,滕弘飞.文化粒子群优化算法[J].大连理工大学学报,2007,47(4):539-544. 被引量:17
  • 6KENNEDY J, EBERHART R C. Particle swarm optimization[ C ]// Proc of IEEE International Joint Conference on Neural Networks. Washington DC : IEEE Computer Society, 1995 : 1942-1948.
  • 7CHEN Dong, WANG Gao-feng, CHEN Zhen-yi. The inertia weight self-adapting in PSO [ C ]//Proc of the 7th World Congress on Intelli- gent Control and Automation. 2008:5313-5316.
  • 8CHEN Gui-min,HUANG Xin-bo,JIA Jian-yuan, et al. Natural expo- nential inertia weight strategy in particle swarm optimization [ C ]// Proc of the 6th World Congress on Intelligent Control and Automation. 2006 : 3672- 3675.
  • 9ZHANG Li-ping, YU Huan-jun, HU Shang-xu . A new approach to improve particle swarm optimization [ C ]//Proc of International Con- ference on Genetic and Evolutionaly Computation. Berlin: Springer- Verlag, 2003 : 134 - 139.
  • 10WANG Li-na, CAO Cui-wen,XU Zhen-hao,et al. An improved parti- cle swarm algorithm based on cultural algorithm for constrained opti- mization[ C]//Advances in Intelligent and Soft Computing. 2012: 453-460.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部