期刊文献+

基于滑动窗独立分量分析的在线包络检测新方法及其在脑-机接口中的应用 被引量:2

The Online Envelope Detection Based on Sliding Window ICA and Its Application to Brain-Computer Interface
原文传递
导出
摘要 独立分量分析(Independent component analysis,ICA)是一种有效的空域滤波方法,在脑-机接口领域具有很高的研究价值和应用潜力。论文围绕基于滑动窗的自适应ICA算法及其在脑-机接口中的应用开展研究,提出了一种基于ICA的信号包络在线检测新方法,并将该方法应用于运动想象诱发的mu节律包络检测,建立了相应的左右手运动想象分类识别算法。在此基础上,进行了离线和在线运动想象脑-机接口实验,取得了较好的识别效果。 Independent component analysis (ICA) is an effective spatial filtering method and has promising potentials in the field of brain computer interface (BCI). This paper focuses on the adaptive ICA algorithm based on sliding window, and a novel approach of ICA-based envelope detection is proposed, which is applied to the envelope detection of mu rhythm induced by motor imagination and the corresponding classification algorithm is developed. With this algorithm, the offline and online experiments of BCI of movement imagery are carried out, and the good recognition results are obtained.
出处 《生物物理学报》 CAS CSCD 北大核心 2012年第11期896-909,共14页 Acta Biophysica Sinica
基金 国家自然科学基金项目(60771033 61271352) 博士点基金项目(200803570002)~~
关键词 独立分量分析 包络检测 脑-机接口 滑动窗 运动想象 Independent component analysis Envelope detection Brain-computer interface Sliding window Motor imagery
  • 相关文献

参考文献24

  • 1Vidal JJ. Toward direct brain-computer communication. Annu Revi Biophys Bioeng, 1973, 2:157~180.
  • 2高上凯.神经工程与脑-机接口[J].生命科学,2009,21(2):177-180. 被引量:22
  • 3Rao R, Scherer R. Brain-computer interfacing [in the spotlight]. IEEE Signal Proc Mag, 2010, 27(4): 152-150.
  • 4Herman P, Prasad G, McGinnity TM. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Sys Rehab Engin, 2008, 16(4): 317~326.
  • 5Park C, Looney D, Kidmose P. Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans Neural Sys Reh, 2011, 19(4): 366-373.
  • 6Pfurtscheller G, Neuper C, Schlogl A. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Neur SysReh, 1998, 6(3): 316~325.
  • 7Cecotti H, Graser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell, 2011, 33(3): 433-445.
  • 8Thomas KP, Guan C, Lau CT. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Trans Biomed Engine, 2009, 56(11-2): 2730-2733.
  • 9Lee H, Choi S. PCA-based linear dynamical systems for multichannel EEG classification. Proceedings of the 9th International Conference on Neural Information Processing, 2002, 2:745-749.
  • 10Makeig S, Enghoff S, Jung TP, Sejnowski TJ. A natural basis for efficient brain-actuated control. ~GEE Trans Rehab Eng, 2000, 8[2): 208-211.

二级参考文献8

  • 1Durand DM. What is neural engineering? J Neural Eng, 2007, 4 (4)
  • 2Guo F, Hong B, Gao XR, et al. A brain-computer interface using motion-onset visual evoked potential. J Neural Eng, 2008, 5:477-85
  • 3Vakman D. On the analytic signal, the Teager-Kaiser energy algorithm, and other methods for defining amplitude and frequency. IEEE Trans. on Signal Processing, Vol. 44, 791-797, 1996.
  • 4河田龙夫,Fourier分析,第十二章,高等教育出版社,1984.
  • 5Huang N.E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A(1998)454,903 -995.
  • 6Bedrosian E. A product theorem for Hilbert transforms.Proc. IEEE, vol 51, pp.868-869, May 1963.
  • 7高静怀,汪文秉,朱光明.小波变换与信号瞬时特征分析[J].地球物理学报,1997,40(6):821-832. 被引量:133
  • 8李世雄,汪继文.信号的瞬时参数与正交小波基[J].地球物理学报,2000,43(1):97-104. 被引量:22

共引文献68

同被引文献20

  • 1Murguialday A R, Hill J, Bensch M, et al. Transition from the locked- in to the completely locked-in state: a physiological analysis [ J]. Clin N eu rophysiol, 2011,122 ( 5 ) : 925 - 933.
  • 2Postelnicu C C, Girbacia F, Talaba D. EOG-based visual navigation interface development [ J ]. Expert Systems with Applications, 2012,39(12) :10857-10866.
  • 3Gu J J, Meng M, Cook A, et al. A study of natural eye movement detection and ocular implant movement control using processed EOG signals [ C ]//Proc of IEEE Conferences on Robotics & Automation. 2001 : 1555-1560.
  • 4Jones L A. Systematic review of alcohol screening tools for use in the emergency department [ J]. Emergency Medicine Journal ,2011,28 (3) :182-191.
  • 5Roche D J O, King A C. Alcohol impairment of saccadic and smooth pursuit eye movements: impact of risk factors for alcohol dependence [J]. Psychopharmacology,2010,212(1:33-44.
  • 6Arden G B, Constable P A. The electro-oculogram[ J]. Progress in Retinal and Eye Research,2006,25(2) :207-248.
  • 7Deng L Y, Hsu C L, Lin T C, et al. EOG-based human-computer in-terface system development[ J]. Expert Systems with Applications, 2010,37(4) :333?-3343.
  • 8Barea R, Boquete L, Ortega S, et al. EOG-based eye movements codification for human computer interaction [ J ]. Expert Systems with Applications,2012,39(3) :2677-2683.
  • 9Usakli A B, Gurkan S. Design of a novel efficient human-computer interface: an electrooculagram based virtual keyboard [ J]. IEEE lrans on Instrumentation and Measurement,2010,59(8) :2099- 2108.
  • 10Lyu Z, Wu X, Li M, et al. A novel eye movement detection algo- rithm for EOG driven human computer interface[ J]. Pattern Recog- nition Letters,2010,31 (9) : 1041-1047.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部