期刊文献+

基于左右手运动想象的在线算法设计与应用 被引量:4

Left/Right-Hand-Motor-Imagery-Based Online Algorithm Design and Its Application
在线阅读 下载PDF
导出
摘要 设计了基于左、右手运动想象的脑电信号预处理、共同空域模式特征提取、SVM分类在线算法,开发了无线发射、接收开关硬件模块,实现了在线脑电开关系统。受试者可以用脑电波来遥控电灯的关开,这为重症瘫痪病人拓展其与自然的直接交流开辟了新的通道。5位健康的受试者参与了训练实验和在线实验,实验结果表明:经过特定训练,受试者均可有效控制该脑电开关系统,其平均正确率达90%,单个指令输出时间平均为4s。 An online motor imagery detect algorithm is proposed, including electroencephalo- graphy (EEG) preprocessing, common spatial patterns' feature extraction, support vector ma- chine (SVM) classification, and threshold mechanism. By designing the light wireless switch hardware module, a light switch system controlled by EEG is developed. Participants can use their brain waves to remotely control turn-on and turn-off of the light, which especially pro- vides a new direct communication channel for patients suffering from amyotrophic lateral scle- rosis (ALS) with the nature. Five healthy subjects participate in a training experiment and an online experiment. The experimental results show that, after a specific training procedure, participants can effectively control the light switch system with an average accuracy of 90 % and an average time of 4 s for each single command.
出处 《数据采集与处理》 CSCD 北大核心 2013年第6期828-833,共6页 Journal of Data Acquisition and Processing
基金 国家高科技发展研究计划("八六三"计划)(2012AA011601)资助项目 广东高校优秀青年创新人才培养计划(LYM 11122)资助项目 2012年度江门市第一批产业技术研究与开发项目(江财工[2012]156号)资助项目 广东省大学生创新创业训练(1134912036)资助项目 智能机器人湖北省重点实验室开放基金(HBIR200904)资助项目 五邑大学青年科研基金(2013zk08)资助项目
关键词 脑机接口 运动想象 异步系统 共空域模式 motor imagery brain-computer interface' asynchronous system common spatial patterns
  • 相关文献

参考文献13

  • 1Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: A review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering,2000,8(2) : 164-173.
  • 2He Bin, Gao Shangkai, Yuan Han. Neural engineer- ing[M]. US.. Springer, 2013..87-151.
  • 3刘慧,谢洪波,和卫星,王志中.基于模糊熵的脑电睡眠分期特征提取与分类[J].数据采集与处理,2010,25(4):484-489. 被引量:42
  • 4Pfurtscheller G, Lopes da Silva F H. Event-related EEG/MEG synchronization and desynchronization: basic principles[J]. Clin Neurophysiol, 1999 (110) : 1842-1857.
  • 5Kama Tae-Eui, Suka Heung-II, Leeb Seong-Whan. Non-homogeneous spatial filter optimization for Elec- troEncephaloGram (EEG)-based motor imagery clas- sification[J]. Neuroeomputing, 2013(2) :1356-1368.
  • 6Wang Yijun, Gao Shangkai, Gao Xiaorong. Common spatial pattern method for channel se].ection in motor imagery based brain-computer interface [C]//Engi- neering in Medicine and Biology 27th Annual Confer- ence. Shanghai: [s. n. ], 2005:5392-5395.
  • 7Ang K K, Chin Z Y, Zhang H H. Filter bank com- mon spatial pattern in brain computer interface[C]// Proceedings of the International Joint Conference on Neural Network. Hong Kong: IEEE, 2008: 2390- 2397.
  • 8徐宝国,宋爱国,杨仁桓.基于运动想象脑电的在线脑机接口实验[J].华中科技大学学报(自然科学版),2011,39(4):60-64. 被引量:9
  • 9施锦河,沈继忠,王攀.四类运动想象脑电信号特征提取与分类算法[J].浙江大学学报(工学版),2012,46(2):338-344. 被引量:21
  • 10王洪涛,邹鹤良.基于事件关联电位脑机接口的电视遥控异步系统[J].控制理论与应用,2012,29(11):1507-1511. 被引量:5

二级参考文献59

  • 1汤晓军,田心,杨卓,张涛.一种改进的近似熵——样品熵及其在颞叶癫痫患者脑电信号分析中的应用(英文)[J].生物物理学报,2004,20(5):382-392. 被引量:4
  • 2刘慧,和卫星,陈晓平.睡眠脑电的非线性动力学方法[J].江苏大学学报(自然科学版),2005,26(2):174-177. 被引量:19
  • 3Pincus S M,Goldberger A L.Physiological time-series analysis:What does regularity quantify?[J].Amer J Physiol Heart Circulatory Physiology,1994,266(4):1643-1656.
  • 4Grouven U,Beger F A,Schultz B,et al.Correlation of narcotrend index,entropy measures,and spectral parameters with calculated propofol effect-site concentrations during induction of propofol-remifentanil anaesthesia[J].Journal of Clinical Monitoring and Computing,2004,18(4):231-240.
  • 5Pincus S M.Approximate entropy (ApEn) as a complexity measure[J].Chaos,1995,5(1):110-117.
  • 6Richman J S,Moorman J R.Physiological time-series analysis using approximate and sample entropy[J].Amer J Physiology-Heart Circulatory Physiology,2000,278(6):2039-2049.
  • 7Chen Weiting,Wang Zhizhong,Xie Hongbo,et al.Characterization of surface EMG signal based on fuzzy entropy[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(2):267-272.
  • 8van Gerven M, Farquhar J, Schaefer R, et al. The brain-computer interface cycle [J]. J Neural Eng, 2009, 6(4): 1-10.
  • 9Vaughan T M, Wolpaw J R. The third international meeting on brain-eomputer interface technology: making a difference[J].IEEE Trans Neural Syst Rehabil Eng, 2006, 14(2): 126-127.
  • 10Pfurtscheller G, Muller-Putz G R, Scherer R, et al. Rehabilitation with brain-computer interface systems [J]. Computer, 2008, 41(10): 58-65.

共引文献73

同被引文献11

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部