期刊文献+

基于密度的快速异常检测方法

A Fast Density-based Outliers Detection Approach
在线阅读 下载PDF
导出
摘要 在基于密度聚类算法的基础上,提出一种基于密度的快速异常检测方法 DBOD,该算法改变了DBSCAN算法对异常检测的被动处理方法,主动从异常出发,重点关注边界对象,实验证明该方法在检索速度方面具有明显优势. This paper presents a fast outliers detection approach-DBOD (density-based outliers detection), which is constructed on density-based clustering algorithms. Taking the place of DBSCAN algorithm's passive processing in outlier detection, this approach actively sets off from the outliers, and pays a big attention on boundary objects. Experiments were performed and the results indicate that this approach gains an advantage over the others in terms of the search speed.
作者 张晓
出处 《伊犁师范学院学报(自然科学版)》 2012年第4期47-49,共3页 Journal of Yili Normal University:Natural Science Edition
关键词 密度聚类 异常数据 DBSCAN DBOD density clustering outliers DBSCAN DBOD
  • 相关文献

参考文献5

  • 1D. Hawkins. Identification of Outliers[M]. London: Chapman and Hall, 1980.
  • 2Breunig MM, Kriegel H, Ng RT, Sander J. LOF: ldentitying density-based local outliers[A]. In: Chen WD, Naughton JF, Bemstein PA, eds. Proc. Of the 2000 ACM SIGMOD Int'l Conf." on Management ofData[C]. Dallas: ACM Press, 2000.93-104.
  • 3M. Daszykowski, B. Walczak, D. L. Massart. Looking for natural patterns in data Partl. Density- based approach [J]. Chemometrics and Intelligent Laboratory Systems, 2001, 56(2): 83-92.
  • 4Martin Ester, Hans-Peter Kriegel, Jorg Sander, etal. A density-based algorithm for discovering clusters in large spatial databases with noise[A]//the Second International Conference on Knowledge Discovery and Data Mining[C]. Portland, Oregon,USA, 1996. 226-23 1.
  • 5J.Han,M.Kanber,著.范明,孟小峰,译.DataMining:ConceptsandTechniques[M].北京:机械工业出版社,2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部