期刊文献+

DBSB:启发式选择边界对象的快速空间聚类算法

DBSB:fast spatial clustering method with heuristically selecting border object
在线阅读 下载PDF
导出
摘要 提出了一种启发式选择边界对象的快速空间聚类算法DBSB,通过一个启发式函数近似选择相对于某个已知核心对象边界区域中的核心对象和边界对象,通过核心对象的序列来快速地扩展它们所在的簇,直至找到一些较小的簇。在此基础上再通过边界对象快速地合并某些簇,即该算法通过两步聚类,达到最终的聚类。理论分析和实验结果表明该算法有效可行。 In this paper,a novel clustering algorithm DBSB (Density Based Spatial Clustering Method with Heuristically Selecting Border Object) is proposed.The algorithm fastly expands the clusters by a heuristical function to choose core objects in the border region of the known core object,and then merges some clusters by border objects.That is,the DBSB algorithm gets the ultimate clustering result through two steps of clustering.Finally,the theoretical analysis and experimental results indicate that the algorithm is effective and efficient.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第11期164-167,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.70471046) 安徽省自然科学基金(the Natural Science Foundation of Anhui Province of China under Grant No.050460402)。
关键词 空闻聚类 边界对象 密度 spatial clustering border object density
  • 相关文献

参考文献10

  • 1Ester M,Kriegel H P,Sander J.Algorithms and application for spatial data mining,geographic data mining and knowledge discovery.Research Monographs in GIS,Taylor and Francis,2001.
  • 2Han Jia-wei,Micheline Kamber.Data mining concepts and technique[M].2nd ed.[S.l.]:China Machine Press,2006:383-386.
  • 3Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proc of 2nd KDD Portland,1996:226-231.
  • 4马帅,王腾蛟,唐世渭,杨冬青,高军.一种基于参考点和密度的快速聚类算法[J].软件学报,2003,14(6):1089-1095. 被引量:108
  • 5Wang Xin,Hamilton H J.DBRS:a density-based spatial clustering method with random sampling[C]//Proc of the 7th PAKDD,Seoul,Korea,2003:563-575.
  • 6薛永生,翁伟,文娟,王劲波,张宇.LSNCCP——一种基于最大不相含核心点集的聚类算法[J].计算机研究与发展,2004,41(11):1930-1935. 被引量:2
  • 7Dai Wei-di,Hou Yue-xian,He Pi-lian,et al.A clustering algorithm based on building a density-tree[C]//Proc of the 4th Int Conf on Machine Learning and Cybernetics,Guangzhou,2005 OR IEEE,2005:1999-2004.
  • 8Katayama N,Satoh S.The SR-tree:an index structure for high-dimensional nearest neighbor queries[J].SIGMOD Record,1997,26(2):369-380.
  • 9Kroger P,Kriegel H-P,Kailing K.Density-connected subspace clustering for high-dimensional data[C]//Proc SIAM Int Conf on Data Mining(SDM'04),Lake Buena Vista,FL,2004:246-257.
  • 10谢昆青,马修军,杨冬青,等(译).空间数据库[M].北京:机械工业出版社,2004.140-141.

二级参考文献16

  • 1Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 2Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 3Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 4Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 5Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 6Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 7Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 8Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.
  • 9M Ester, HP Kriegel, J Sander, et al. A density based algorithm for discovering clusters in large spatial databases with noise. In: E Simoudis, JW Han, UM Fayyad eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226~231
  • 10S Guha, R Rastogi, K Shim. CURE: An efficient clustering algorithm for large databases. In: LM Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1998. 73~84

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部