期刊文献+

用于数据挖掘的贝叶斯网络 被引量:101

Bayesian Network for Data Mining
在线阅读 下载PDF
导出
摘要 贝叶斯网络是用来表示变量集合的连续概率分布的图形模式 ,它提供了一种自然地表示因果信息的方法 ,用来发现数据间的潜在关系 .贝叶斯网络的学习也就是要找出一个能够最真实反映现有数据库中各数据变量相互之间的依赖关系的贝叶斯网络模型 ,即根据数据样本 D和先验知识 ζ,找出后验概率 p( sh |D,ζ)最大的贝叶斯网络 S.该文在数学上对贝叶斯网络的学习方法进行了严格的推导 ,用一个实例来说明贝叶斯网络的计算过程 。 Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. It is a natural way to express the causal information, and to discover the hidden patterns among the data . Learning of Bayesian network is to find out a network model that best represents the dependent relationships of the variables in a database, that is, given sample D and prior knowledge ζ, to find a Bayesian network S that fits the maximum posterior probability p(s h|D,ζ). In this paper, the learning process of the network is strictly derived , and a case study is presented to indicate the applications of Bayesian network in data mining.
出处 《软件学报》 EI CSCD 北大核心 2000年第5期660-666,共7页 Journal of Software
基金 国家CIMS工程研究中心基金! (No.CIMS-JJ.96-001 )资助
关键词 数据挖掘 贝叶斯网络 贝叶斯概率 数据库 Data mining, Bayesian network, Bayesian probability, prior probability, posterior probability.
  • 相关文献

参考文献11

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152
  • 101999-03-15

同被引文献792

引证文献101

二级引证文献508

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部