期刊文献+

贝叶斯网在数据挖掘中的应用 被引量:1

在线阅读 下载PDF
导出
摘要 贝叶斯网用图形的模式表示变量集合的联合分布,应用于数据挖掘能够将变量之间的潜在依赖关系反映出来。介绍了贝叶斯网,概括了构造贝叶斯网的方法,给出了建网的伪代码,通过一个实例说明了贝叶斯网在数据挖掘中的应用。
作者 李强 徐捷
出处 《中国科技信息》 2012年第13期90-91,共2页 China Science and Technology Information
  • 相关文献

参考文献10

  • 1刘伟娜,霍利民,张立国.贝叶斯网络精确推理算法的研究[J].微计算机信息,2006,22(03X):92-94. 被引量:33
  • 2Chen J, Bell D, Liu W. Learning Bayesian networks from data: An efficient approach based on information theory [J]. Artificial Intelligence, 2002, 1 57(1-2), pp.43- 90.
  • 3David Heckerman. A tutorial on learning Bayesian networks. Technical geportMSR--TR-95-06, Microsoft Research, 1996.
  • 4Suzuki J. Learning Bayesan Hetief networks Based on the Minimum Description Length Principle: Basic Properties. IEEE Transactions on fund&mentals, 1999, E82-A (9), pp. 2257-2245.
  • 5Cooper G F, Herskovits E A.A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4), pp. 509-547.
  • 6Cooper G. Comput&tional complexity of probabilistic inference using Bayesian belief networks. [J]. Artificial Intelligence, 1990, 42(2 6), pp. 593-405.
  • 7董立岩,苑森淼,刘光远,李永丽.基于预测能力的连续贝叶斯网络结构学习[J].计算机工程与应用,2007,43(9):23-24. 被引量:3
  • 8lan H. Witten, Eibe Frank, Mark A. Hall. Data Mining Practical Machine Learning Tools and TechniQues. [M] Srd Edition. 2010, pp.262N273.
  • 9K. P. Bennett, O. L. Mangasarian: "Robust linear programming discrimination of two linearly inseparable sets". [j]. Optimization Methods and Software 1, 1992, 25-34 (Gordon & Breach Science Publishers).
  • 10李光,张凤斌.基于树突状细胞算法的分类方法研究[J].电脑知识与技术,2010(11):8798-8800. 被引量:2

二级参考文献20

  • 1曹锐,李宏光,李昊阳.一类混杂系统Petri网模型的优化算法的研究[J].微计算机信息,2005,21(1):27-28. 被引量:27
  • 2U.AICKELIN.S.CAYZER.The Danger Theory and Its Application to Artificial Immune Systems[C].Proceedings of the 1st International Conference on Artificial Immune Systems,Canterbury,UK,2002:141-148.
  • 3U.AICKELIN,P BENTLEY.Danger theory:The Link Between AIS and IDS[C].Proceedings of the Second International Conference on Artificial Immune Systems(ICARIS-03),2003:147-155.
  • 4J.GRE.ENSMITH.The Dendritic Cell Algorithm[D].University Of Nottingham,Nottingham,UK,2007.
  • 5U.AICKELIN,J GREENSMITH,J TWYCROSS.Immune System Approaches to Intrusion Detection-A Review[C].In ICARIS-04,LNCS 3239,2004:316-329.
  • 6J.GREENSMITH,U.AICKELIN,G.TEDESCO.Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm[J].Information Fusion.2010,11(1):21-34.
  • 7J.GREENSMITH,J.TWYCROSS,U.AICKELIN.Dendritic cells for anomaly detection[C].Proc.of the IEEE World Congress on Computational Intelligence,2006:664-671.
  • 8S.FORREST.Immunity by Design:an Artificial Immune System[C].Procedings of the Genetic and Evolutionary Computation Conference1999(GECCO)Morgan-Kaufmann,San Francisco,CA,1999:1289-1296.
  • 9S.FORREST,A.S.PERLSON.Self-Nonself Discrimination in a Computer Proc[C].The 1994 IEEE Symposium on Research in Security and Privacy,Los Alamitos,CA,1994:202-21.
  • 10POLLY MATZINGER.Tolerance Danger and the Extended Family[J].Annual Review of Immunology 12,1994,12:991-1045.

共引文献35

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部