期刊文献+

收敛粒子群全区域自适应粒子滤波算法及其应用 被引量:12

Novel Lanscape Addptive Particle Filter Algorithm Based on Convergent Particle Swarm and Its Application
在线阅读 下载PDF
导出
摘要 针对基于粒子群优化的粒子滤波(PSO-PF)算法容易陷入局部最优,并且计算复杂度高、收敛速度慢的问题,该文提出了一种基于收敛粒子群的新型全区域自适应粒子滤波算法(LAPSO-PF)。该算法在搜索中扩大了粒子信息来源的范围,将惯性权重引入速度更新公式,改善了局部最优现象,减少了寻优所需的迭代次数。最后利用单变量非静态增长模型、目标跟踪模型以及故障检测模型对该文算法的性能进行仿真测试。实验结果表明,该文算法改善了PSO-PF易陷入局部最优的现象,提高了精度和运算速度。 In view of that the particle filter algorithm based on the particle swarm optimization( PSO- PF)is easy to trap in local optimum and has the complex calculation and slow convergence speed,a novel lanscape adaptive particle filter algorithm based on the convergent particle swarm optimization (LAPSO-PF) is proposed. This algorithm expends the source of the particle information, introduces the inertia weight into updating formula, and limits the particles outside the searching range. The local optimum and iteration times are reduced. The simulation and test are carried out in the single variable non-static growth model, the target tracking model and the fault detection model. The results show that this algorithm reduces the local optimization and improves the velocity and precision.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第5期861-868,共8页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61104196) 高等学校博士学科点专项科研基金(20113219110027) 南京理工大学自主科研专项计划(2010ZYTS051) 南京理工大学紫金之星基金
关键词 粒子滤波 收敛粒子群 全局最优值 惯性权重 迭代次数 particle filters convergent particle swarm global optimum inertia weight iteration times
  • 相关文献

参考文献15

  • 1徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪[J].南京理工大学学报,2007,31(4):514-517. 被引量:5
  • 2Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J]. Radar and Signal Processing, IEE Proceedings F, 1993,140(2): 107-113.
  • 3Doucet A,Godsill S. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Computing,2000,10( 1 ) : 197-208.
  • 4Kong A, Liu J. Sequential imputations and Bayesian missing data problems [ J ]. Journal American Statistical Association, 1994,89 (2) : 278-288.
  • 5方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 6刘利枚,蔡自兴.粒子群优化的多机器人协作定位方法[J].中南大学学报(自然科学版),2011,42(3):682-687. 被引量:9
  • 7Wang Xiangyang, Wan Wanggen, Yu Xiaoqing. Annealed particle filter based on particle swarm optimization for ar- tictdated three-dimensional human motion tracking [ J ]. Optical Engineering,2010,49( 1 ). 2041-2043.
  • 8李雄杰,周东华.非线性系统测量数据丢失时的一种粒子滤波器算法[J].兵工学报,2009,30(10):1405-1408. 被引量:2
  • 9Yu Yihua,Zheng Xuanyuan. Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution [ J ]. Signal Processing,2011,91 (5) : 1339-1342.
  • 10Kennedy J, Eberhart R C. Particle swarm optimisation [ A ]. Proceedings of IEEE International Conference on Neural Networks [ C ]. Perth, Australia: IEEE, 1995 : 1942-1948.

二级参考文献84

  • 1王玲,邵金鑫,万建伟,刘云辉.多机器人定位中基于熵的分布式观测量选择方法[J].电子学报,2007,35(2):333-336. 被引量:9
  • 2王玲,刘云辉,万建伟,邵金鑫.基于相对方位的多机器人合作定位算法[J].传感技术学报,2007,20(4):794-799. 被引量:26
  • 3蔡自兴,陈白帆,王璐,刘丽珏,段琢华.异质多移动机器人协同技术研究的进展[J].智能系统学报,2007,2(3):1-7. 被引量:4
  • 4Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50 : 174 - 188.
  • 5Anderson B, Moore J. Optimal Filtering. New Jersey: Prentice-Hall, 1979.
  • 6Koteeha J H, Djuric P M. Gaussian sum particle filtering. IEEE Transactions on Signal Processing, 2003, 51 (10): 2603 - 2613.
  • 7Julier S, Uhlmann J, Durrant-Whyte H. A new approach for filtering nonlinear systems. Proceedings of the American Control Conference. 1995. 1628 - 1632.
  • 8Norgaard M, Poulsen N, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36 : 1627 - 1638.
  • 9Van Der Merwe R. Probabilistic Inference using SigmaPoint Kalman Filters. Portland: OGI School of Science & Engineering, Oregon Health & Science University, 2003.
  • 10Doucet A, De Freitas N, Gordon N. Sequential MonteCarlo Methods in Practice. New York: Springer-Verlag, 2001.

共引文献153

同被引文献96

引证文献12

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部