期刊文献+

代价约束多核最小二乘支持向量机及其应用

Cost-Constraint Based Multiple Kernel Least Squares Support Vector Machine and Its Application
原文传递
导出
摘要 针对多核最小二乘支持向量机(multiple kernel least squares support vector machine,MK-LSSVM)忽略了核函数的代价以及缺乏稀疏性的问题,提出了一种代价约束的稀疏多核最小二乘支持向量机方法.将MK-LSSVM的原始优化问题转化为二阶锥规划形式,引入核函数代价因子,约束复杂核函数的权重,以节约变量存储空间和计算时间,利用Schmidt正交化理论约简核矩阵,进一步减小计算量,并根据支持向量的数目以及活动核函数的类型评估多核学习的总代价.测试数据集仿真结果表明,相比传统的MK-LSSVM,该方法利用更少的支持向量和更简单的组合核函数达到了相同的精度要求,代价更小.采用该方法预测浮选回收率的代价值降低了27.56. Considering the neglect of kernel function cost and lack of sparsity of multiple kernel least squares support vector machine(MK-LSSVM),a cost-constraint based multiple kernel least squares vector machine with sparsity is proposed.The primal optimal problem of MK-LSSVM is converted into second-order cone programming,and then the weight of complex kernel function is restricted by introducing cost factors so as to save storage space and computing time of variable quantity.Furthermore,the kernel matrices are reduced by Schmidt orthogonalization theory to lower computational complexity.The total cost of multiple kernel learning can be evaluated according to the number of support vectors and active kernel functions.The simulation results on testing datasets show that the proposed method can achieve the same accuracy as MK-LSSVM by using less support vectors and simpler mixture kernel functions with cheaper consumption and better real-time performance.The cost vaule of froth flotation mineral recovery prediction used the proposed method reduces 27.56.
出处 《信息与控制》 CSCD 北大核心 2012年第5期617-621,共5页 Information and Control
基金 国家杰出青年科学基金资助项目(61025015) 国家自然科学基金重点资助项目(61134006)
关键词 代价约束 多核学习 最小二乘支持向量机 稀疏性 泡沫浮选 回收率 cost-constraint multiple kernel learning least squares support vector machine sparsity froth flotation recovery
  • 相关文献

参考文献12

  • 1宋海鹰,桂卫华,阳春华.稀疏最小二乘支持向量机及其应用研究[J].信息与控制,2008,37(3):334-338. 被引量:9
  • 2汪洪桥,孙富春,蔡艳宁,陈宁,丁林阁.多核学习方法[J].自动化学报,2010,36(8):1037-1050. 被引量:156
  • 3Zheng D N, Wang J X, Zhao Y N. Non-flat function estimation with a multi-scale support vector regression[J]. Neurocomputing, 2006, 70 (1/2/3): 420-429.
  • 4Hu M Q, Chen Y Q, Kwok J T Y. Building sparse multiple- kernel SVM classifiers[J]. IEEE Transactions on Neural Networks, 2009, 20(5): 827-839.
  • 5Zheng S, Liu J, Tian J W. An efficient star acquisition method based on SVM with mixtures of kernels[J]. Pattern Recognition Letters, 2005, 26(2): 147-165.
  • 6Hotta K. Local normalized linear summation kernel for fast and robust recognition[J]. Pattern Recognition, 2010, 43(3): 906- 913.
  • 7Rakotomamonjy A, Bach F R, Canu S, et al. SimpleMKL[J]. Journal of Machine Learning Research, 2008, 9(Nov): 2491- 2521.
  • 8Subrahmanya N, Shin Y C. Sparse multiple kernel learning for signal processing applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 788-798.
  • 9Zeng X Y, Chen X W. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2005, 16(6): 1541-1546.
  • 10Bach F R. Consistency of the group Lasso and multiple kernel learning[J]. Journal of Machine Learning Research, 2008(9): 1179-1225.

二级参考文献38

  • 1林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报,2007,32(3):304-308. 被引量:30
  • 2胡志坤,桂卫华,彭小奇,姚俊峰,张卫华.铜转炉生产操作模式智能优化[J].控制理论与应用,2005,22(2):243-247. 被引量:16
  • 3Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 4甘良志,孙宗海,孙优贤.稀疏最小二乘支持向量机[J].浙江大学学报(工学版),2007,41(2):245-248. 被引量:27
  • 5Barbian N, Cilliers J J, Morar S H, et al. Froth imaging, air recovery and bubble loading to describe flotation bank performance. International Journal of Mineral Processing, 2007, 84(1-4) :81-88.
  • 6Barbian N, Hadler K, Ventura-Medina E, et al. The froth stability column: linking froth stability and flotation performance. Minerals Engineering, 2005, 18(3): 317-324.
  • 7Mu S J, Zeng Y Z, Liu R L. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. Process Control, 2002, 16(6) : 557-566.
  • 8Kaartinen J, Hatonen J, Hyotynierni H, et al. Machine vision based control of zinc flotation-a ease study. Control Engineering Practice, 2006, 14(12): 1455-1466.
  • 9Rughooputh H C S, Rughooputh S D D V. Neural network process vision systems for flotation process. Kybernetes, 2002, 31(3-4): 529-535.
  • 10HyoKtyniemi H, Ylinen R. Modeling of visual rotation froth data. Control Engineering Practice, 2000, 8(3) :313-318.

共引文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部