期刊文献+

基于自适应递推LSSVM的硅锰合金成分在线预测

An on-line prediction model based on adaptive recursive least square support vector machine for silicon-manganese alloy composition
在线阅读 下载PDF
导出
摘要 针对硅锰合金埋弧熔炼过程的特点,提出了一种基于自适应递推最小二乘支持向量机(ARLSSVM)的合金成分在线预测模型。该模型以实测工况参数为数据集,当新增一个样本时,分别采用增长记忆递推算法、限定记忆递推算法和缩减记忆递推算法训练最小二乘支持向量机(LSSVM),有效避免高维矩阵的求逆,加快模型更新的速度。然后通过自适应模型匹配算子选择相应的预测输出模型,提高模型的预测精度。将此模型应用于30MVA硅锰合金埋弧炉冶炼过程合金成分在线预测,实际生产运行数据验证了此方法的有效性。 According to the characteristics of the silicon-manganese smelting process in a submerged arc furnace, an on-line model for prediction of silicon-manganese composition based on an adaptive recursive least square support vector machine (ARLSSVM) is proposed in the paper. In this model, three recursive algorithms (increased recuisive algorithm, fixed algorithm and decreased algorithm) are employed to train the least square support vector machines using the measured data, which avoids the difficulties in solving high-dimensional inverse matrix and makes the model be updated rapidly. Then the adaptive model selection operator is used to select the proper one as the prediction model according to the process conditions to improve the prediction precision. The method was applied to the online prediction of the silicon-manganese composition in a 30MVA submerged arc furnace smelting process, and the result showed its effectiveness.
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第11期1213-1218,共6页 Chinese High Technology Letters
基金 863计划(2009AA042124)和国家自然科学基金(60634020,608740697,60843002)资助项目.
关键词 硅锰合金 成分 在线预测 递推最小二乘支持向量机 自适应模型选择算子 silicon-manganese alloy, composition, on-line prediction, recursive least squares support vector machine, adaptive model selection operator
  • 相关文献

参考文献15

  • 1Hauksd6ttir A S, Gestsson A, V6steinsson A. Submerged- arc ferrosilicon furnace simulator: validation for different furnaces and operating ranges. Control Engineering Prac- tice, 1998, 6(8) :1035-1042.
  • 2Saevarsdottir G A, Bakken J A, Sevastyanenko V G, et al. Modeling of AC arcs in submerged-arc furnaces for production of silicon and ferrosilicon. In: Proceedings of the 58th Electric Furnace Conference, Orlando, USA, 2000. 607--616.
  • 3Vapnik V N. An overview of statistical learning theory.IEEE Transactions on Neural Networks, 1999, 10 ( 5 ) : 985-999.
  • 4Yuan P, Mao Z Z, Wang F L. Endpoint prediction of EAF based on multiple support vector machines. Interna- tional Journal of Iron and Steel Research, 2007, 14(2) : 20 -24.
  • 5唐贤伦,庄陵,胡向东.铁水硅含量的混沌粒子群支持向量机预报方法[J].控制理论与应用,2009,26(8):838-842. 被引量:21
  • 6Wang X F, Chen J D, Liu C B, et al. Hybrid modeling of penicillin fermentation process based on least square support vector machine. Chemical Engineering Research and Design, 2010, 88(4): 393-512.
  • 7Suykens J A K, Vanderwalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3) : 293-300.
  • 8Kumar M, Kar I N. Non-linear HVAC computations using least square support vector machines. Energy Conversion and Management, 2009 (50) : 1411-1418.
  • 9周开军,阳春华,牟学民,桂卫华.一种基于图像特征提取的浮选回收率预测算法[J].高技术通讯,2009,19(9):957-963. 被引量:8
  • 10Kang Y W, Li J, Cao G Y, et al. Dynamic temperature modeling of an SOFC using least squares support vector machine. Journal of Power Sources, 2008,179 ( 2 ) : 683 - 692.

二级参考文献54

共引文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部