期刊文献+

DGA-SVR日径流非线性预报模型及应用 被引量:4

Nonlinear Prediction Model of Daily Runoff Based on DGA-SVR and Its Application
原文传递
导出
摘要 实时而准确的日径流量预报在防洪减灾、优化调度等方面起到了巨大作用。将遗传算法(GA)与支持向量回归(SVR)改进模型耦合,同时对SVR三个重要参数(C,σ,ε)进行动态寻优,构建了动态三参数优化GA-SVR日径流非线性预报模型(DGA-SVR)用于黑水河流域日径流预报,通过与BP神经网络和多元线性回归预测结果进行对比分析,DGA-SVR模型预测精度明显优于BP神经网络和多元回归模型。 Accurate runoff forecasting plays an important role in flood control, disaster prevention and optimal operation of reservoir system. This paper combines genetic algorithm with improved support vector regression model and optimizes parameters (C, σ and ε) of SVR dynamically. And then the nonlinear prediction model DGA-SVR is established to forecast the daily runoff in Heishuihe River Basin. Comparative analysis of the BP neural networks and multiple variables linear regression, the results show that the prediction accuracy of DGA-SVR model is obvious better than that of the BP neural networks and multiple variables linear regression model.
出处 《水电能源科学》 北大核心 2012年第8期23-25,共3页 Water Resources and Power
关键词 日径流 非线性 时间序列 遗传算法 支持向量回归 daily runoff nonlinear time series genetic algorithm support vector regression
  • 相关文献

参考文献5

二级参考文献39

共引文献71

同被引文献37

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部