期刊文献+

车载多管火箭炮发射系统基座的轻量化 被引量:8

Lightweight of Pedestal of Vehicle-carried Multiple Rocket Launcher System
在线阅读 下载PDF
导出
摘要 针对多管火箭炮发射系统基座的轻量化问题,基于拓扑优化理论及基座的设计要求,建立了基座优化的有限元模型.通过引入惩罚因子和最小成员尺寸避免了优化时数值不稳定的问题,得到了基座的拓扑优化设计结构.进行了刚强度校核和动力学响应分析.结果表明,刚强度满足设计要求,优化后的比刚度裕度得到了提高,质量减小了23%;经分析,优化后的基座对整炮性能响应的影响基本可以忽略.该优化设计方法可为多管火箭炮其他部件的轻量化设计提供参考. Based on the topology optimization theory and design requirements of pedestal, the finite element model for the structural optimization of pedestal was built to deal with the lightweight problem of Multiple Rocket Launcher System(MRLS)pedestal. The numerical instabilities in op- timization was avoided by introducing penalty factor and minimum mumbers size,and the design structure of the topology optimization was obtained. The stiffness and strength were checked, and the dynamic responses were analyzed. The results of optimization show that with mass of the pedestal decreasing by 23% ,the stiffness and strength can meet the design requirements,and the specific stiffness is increased ~ the influence of optimized pedestal on response analysis of the whole MRLS can be ignored. The optimization method offers references for lightweight design of other parts of MRLS.
出处 《弹道学报》 EI CSCD 北大核心 2012年第2期101-105,共5页 Journal of Ballistics
基金 国防基础科研基金项目
关键词 多管火箭炮 基座 拓扑优化 比刚度 轻量化 multiple rocket launcher system pedestal topology optimization specificstiffness lightweight
  • 相关文献

参考文献7

  • 1朱孙科,马大为,何勇,于存贵,乐贵高.基于动力学仿真的舰炮基座结构拓扑优化设计[J].系统仿真学报,2009,21(20):6650-6652. 被引量:6
  • 2刘加光,陈义保,罗震.连续体结构的模糊多目标拓扑优化设计方法研究[J].系统仿真学报,2007,19(5):1095-1099. 被引量:10
  • 3BENDSOE M PoSIGMUND O. Topology optimization theory, methods and application [M]. New York, USA: Springer Press, 2003.
  • 4ZHOU M, PAGALDIPTI N, THOMAS H L, et al. An integrated approach to topology, sizing and shape optimization [J]. Structural Multidiseiplinary Optimization, 2004, 26 ( 5 ) : 308--317.
  • 5ZHOU M, FLEURY R, SHYY Y K, et al. Progress in topology optimization with manufacturing constraints[C]. Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. USA: AIAA, 2002 : 1 -- 8.
  • 6ZHOU M, SHYY Y K, THOMAS H L. Checkerboard and minimum member size control in topology optimization[J]. Structural Multidisciplinary Optimization, 2001, 21 (2): 152--158.
  • 7岑海棠.结构仿生理论、轻质零件结构仿生设计及RP工艺验证[D].北京:北京航空航天大学机械工程及自动化学院,2004.

二级参考文献22

  • 1罗震,陈立平,黄玉盈,张云清.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. 被引量:158
  • 2刘加光,陈义保,罗震.连续体结构的模糊多目标拓扑优化设计方法研究[J].系统仿真学报,2007,19(5):1095-1099. 被引量:10
  • 3M P Bendsoe, O Sigmund. Topology Optimization: Theory, Methods and Application [M]. New York, USA: Springer, 2003.
  • 4Zhou M, N Pagaldipti, H L Thomas, et al. An Integrated Approach to Topology, Sizing, and Shape Optimization [J]. Structural Multidisciplinary Optimization (S 1615-1488), 2004, 26(5): 308-317.
  • 5Zhou M, R Fleury, Y K Shyy, et al. Progress in Topology Optimization with Manufacturing Constraints [C]// Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia, USA. USA: AIAA, 2002.
  • 6Zhou M, Y K Shyy, H L Thomas. Checkerboard and Minimum Member Size Control in Topology Optimization [J]. Structural Multidisciplinary Optimization (S1615-1488), 2001, 21(2): 152-158.
  • 7Bendsφe M P, Sigmund O. Topology optimization: Theory, Methods,and Applications [M]. New York: Springer, 2003.
  • 8Bendsφe M P, Kikuchi N. Generating Optimal Topology in Structural Design Using a Homogenization Method [J]. Computer Methods in Applied Mechanics and Engineering (S0045-7825), 1988, 71 (2): 197-224.
  • 9Bendsφe M P, Sigmund O. Material interpolation Schemes intopology optimization [J]. Archive of Applied Mechanics(S0939-1533), 1999, 69(9): 635-654.
  • 10Chen T Y, Wu S C. Multiobjective Optimal Topology Design of Structures [J]. Computational Mechanics (S0178-7675), 1998, 21(6): 483-492.

共引文献18

同被引文献57

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部