期刊文献+

基于AR模型和Lempel-Ziv复杂度的癫痫发作预报 被引量:2

Epileptic seizure prediction based on AR model and LZC
暂未订购
导出
摘要 目的癫痫是由多种病因引起的慢性脑功能障碍综合征,及时的发作预报,对于建立新的治疗方法和改善患者的生活质量有着至关重要的作用。目前大部分脑电分析算法存在计算速度慢、适应性差等问题,无法满足癫痫脑电发作预报的要求。方法本文应用自回归模型对脑电信号进行特征提取,支持向量机(support vector machine,SVM)作脑电各个时期分类器,并与Lempel-Ziv复杂度分析计算相结合,准确识别发作前期,以实现癫痫的发作预报。结果应用弗莱堡大学数据对上述方法的有效性进行验证。仿真结果表明,该方法得到的发作漏检率、误报率较低,预报提前时间较长。结论将AR模型和Lempel-Ziv复杂度相结合,对癫痫发作预报的实现,有一定参考价值和意义。 Objective Epilepsy is a chronic brain dysfunction syndrome caused by many diseases. The predictions of epilepsy seizure are significant for both the establishment of new treatment methods and the improvement of the patients' life qualities. The current EEG analysis algorithm cannot meet the requirement of epileptic seizure prediction for the slow computation and the poor adaptability. Methods This paper applies autoregressive(AR) model for feature extraction, a support vector machine as a classifier, and combines Lempel-Ziv complexity(LZC) to identify preictal accurately. Results Using the data from Freiburg University, the simulation results show that the methods used in this paper achieve a lower false alarm rate, a.lower failed reporting rate and a longer lead time. Conclusions This paper provides references for the realization of the epileptic seizure prediction by combining AR model and LZC.
出处 《北京生物医学工程》 2012年第3期273-277,共5页 Beijing Biomedical Engineering
基金 国家自然科学基金(61074096)资助
关键词 癫痫 脑电信号 自回归模型 Lempel-Ziv复杂度 发作预报 epilepsy EEG autoregressive model Lempel-Ziv complexity seizure prediction
  • 相关文献

参考文献13

  • 1刘旋,高小榕,张国君,高上凯.量化脑电分析方法及其在癫痫易发作期检测中的应用[J].北京生物医学工程,2007,26(3):274-279. 被引量:1
  • 2汪春梅,邹俊忠,张见,张志锁.基于多分辨分析的脑电癫痫波自动检测[J].计算机应用研究,2009,26(8):2959-2961. 被引量:1
  • 3Brunner C, Seherer R, Graimann B. Online control of a brain- computer interface using phase synchronization [ J ]. IEEE Transactions on Biomedical Engineering, 2006, 53 ( 12 ) : 2501 - 2506.
  • 4Mirzaei A, Ayatollahi A, Gifani,P, et al. EEG Analysis based on wavelet-spectral entropy for epileptic seizures detection [ C ]. 2010 3rd International Conference on Biomedical Engineering and Informatics, 2010: 878-882.
  • 5Li T, Hong J. EEG classification based on small-world neural network for brain-computer interface [ C ]. Natural Comutation (ICNC) , 2010, 5(1): 252-256.
  • 6蔡冬梅,周卫东,刘凯,李淑芳,耿淑娟.基于Hurst指数和SVM的癫痫脑电检测方法[J].中国生物医学工程学报,2010,29(6):836-840. 被引量:14
  • 7马颖颖,张泾周,吴疆.脑电信号处理方法[J].北京生物医学工程,2007,26(1):99-102. 被引量:12
  • 8Padmasai Y ;SubbaRso K; Malini V. Linear Prediction Modelling for the Analysis of the Epileptic EEG [ C ]. Advances in Computer Engineering ( ACE), 2010 International Conference. 2010 : 6-9.
  • 9Schneider, Mustaro M, Lima PN, et al. Automatic recognition of eplilepic seizure in EEG via support vector machine and dimension fractal[ C ]. International Joint Conference on Neural Network, 2009:2841-2845.
  • 10EEG Database at Epilepsy Center of the University Hospital of Freiburg, Germany [ EB/OL]. (2003). https://epilepsy, uni- freiburg, de/freiburg-seizure-prediction-proj ect/eeg.

二级参考文献68

共引文献37

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部