期刊文献+

基于幂变换的多目标进化算法MOEA/D权重设计方法 被引量:4

A Weight Design Method Based on Power Transformation for Multi-Objective Evolutionary Algorithm MOEA/D
在线阅读 下载PDF
导出
摘要 在多目标最优化问题中,如何求解一组均匀散布在前沿界面上的有效解具有重要意义.MOEA?D是最近出现的一种杰出的多目标进化算法,当前沿界面的形状是某种已知的类型时,MOEA?D使用高级分解的方法容易求出均匀散布在前沿界面上的有效解.然而,多目标优化问题的前沿界面的形状通常是未知的.为了使MOEA?D能求出一般多目标优化问题的均匀散布的有效解,利用幂函数对目标进行数学变换,使变换后的多目标优化问题的前沿界面在算法的进化过程中逐渐接近希望得到的形状,提出了一种求解一般的多目标优化问题的MOEA?D算法的权重设计方法,并且讨论了经过数学变换后前沿界面的保距性问题.采用建议的权重设计方法,MOEA?D更容易求出一般的多目标优化问题均匀散布的有效解.数值结果验证了算法的有效性. In multi-objective optimization problems, it is very important to find a group of uniformly distributed Pareto optimal solutions on Pareto fronts. MOEA/D is one of the promising evolutionary algorithms for multi-objective optimization at present. When the Pareto front is some known types of shape, the MOEA/D can find uniformly distributed Pareto-optimal solutions by using the advanced decomposition. Nevertheless, it is a nontrivial task for the MOEA/D for a general shape of the Pareto front. In this paper, each objective function is transformed by the power function, which makes the Pareto front of multi-objective optimization close to the desired shape. Furthermore, a kind of weight design method of MOEA/D is proposed to solve general multi-objective optimization problem. This paper also discusses the distance preserving character of Pareto front by mathematics transform. MOEA/D, making use of proposed weight design method, easily finds uniformly distributed Pareto optimal solutions for general multi-objective optimization problem. Numerical results show the effectiveness of MOEA/D with the proposed weight design method.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第6期1264-1271,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60974077) 广东省自然科学基金团队项目(S2011030002886) 广东省自然科学基金项目(10251009001000002) 香港研资局优配研究基金项目(HKBU210309)
关键词 多目标优化 进化算法 均匀散布 前沿界面 权重设计 幂变换 multi-objective optimization evolutionary algorithm uniform distribution Pareto front weight design power transformation
  • 相关文献

参考文献18

  • 1Deb K. Multi-Objective Optimization Using Evolutionary Algorithms [M]. New York: Wiley, 2001.
  • 2Coello C, Veldhuizen D, Lamont G. Evolutionary Algorithms for Solving Multi-Objective Problems [M]. Norwell, MA: Kluwer, 2002.
  • 3Liu Hailin, Wang Yuping, Cheung Yiuming. A multiobjeetive evolutionary algorithm using rain-max strategy and sphere coordinate transformation [J]. Intelligent Automation and Soft Computing, 2009, 15(3): 361-384.
  • 4刘淳安,王宇平.基于新模型的动态多目标优化进化算法[J].计算机研究与发展,2008,45(4):603-611. 被引量:14
  • 5张利彪,周春光,马铭,孙彩堂.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184. 被引量:29
  • 6Liu Hailin, Li Xueqiang. The multiobjective evolutionary algorithm based on determined weight and sub-regional search [C] nProe of IEEE CEC'2009. Piscataway, NJ: IEEE, 2009:1928-1934.
  • 7Leung Y, Wang Yuping. Mu/tiobjective programming using uniform design and genetic algorithm [J]. IEEE Trans on SMC: Part C, 2000, 30(3): 293-304.
  • 8Zitzler E, Thieel L. Multiobiective evotutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Trans Evolutionary Computation, 1999, 3 (4) : 257-271.
  • 9Zitzler E, Laumanns M, Thiele L. SPEA2: Improving thestrength pareto evolutionary algorithm for multiobjeetive optimization [C]//Proc of Evolutionary Methods for Design Optimization and Control with Application to Industrial Problems. Athens, Greece: International Center for Numerical Methods in Engineering, 2001 : 95-100.
  • 10Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA II [J].IEEE Trans on Evolutionary Computation, 2002, 6(2) : 182-197.

二级参考文献70

共引文献62

同被引文献24

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部