期刊文献+

基于新模型的动态多目标优化进化算法 被引量:14

Dynamic Multi-Objective Optimization Evolutionary Algorithm Based on New Model
在线阅读 下载PDF
导出
摘要 在动态多目标优化中,各目标通常相互冲突,其最优解往往有无穷多个,如何在时间连续发生变化的情况下依然能求出分布均匀且数量多的Pareto最优解供决策者选择十分重要.对动态多目标优化问题连续变化的时间变量区间进行了任意划分,在得到的每个时间子区间上把动态多目标优化问题近似为静态多目标优化问题,进而在每个子区间上定义了种群的静态序值方差和静态密度方差,然后把目标个数任意的动态多目标优化问题转化成一个双目标静态优化问题.在给出的一种能自动检测时间变化的自检算子下,提出一种新的动态多目标优化进化算法,并且证明了算法的收敛性.计算机仿真表明新算法对动态多目标优化问题求解十分有效. Dynamic multi-objective optimization problems (DMOPs) often involve incommensurable, competing and varying objectives with time, and the number of their optimal solutions is usually infinite. Thus how to find a sufficient number of uniformly distributed and representative Pareto optimal solutions under the condition of the continuously changing time for the decision maker is very important. In this paper, the continuously changing time period of DMOPs is divided into several random subperiods. In each subperiod, the dynamic multi-objective optimization problem is approximated by a static multi-objective optimization problem. At the same time, the static rank variance and the static density variance of the population is defined in each subperiod. Then, by using the static rank variance and the static density variance of the population, the dynamic multi-objective optimization problem with random objective functions is transformed into a bi-objective static optimization problem. A new dynamic multi-objective optimization evolutionary algorithm is proposed based on a new self-check operator which can automatically check out the time variation and its convergence is proved. The simulations are made and the results demonstrate the effectiveness of the proposed algorithm.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第4期603-611,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60374063) 陕西省自然科学基础研究计划基金项目(2006A12) 陕西省教育厅科研计划基金项目(07JK180) 宝鸡文理学院重点科研基金项目(ZK0619)
关键词 多目标优化 动态优化 进化算法 PARETO最优解 全局收敛性 multi-objective optimization dynamic optimization evolutionary algorithm Pareto optimal solution global convergence
  • 相关文献

参考文献15

  • 1Y Jin, J Branke. Evolutionary optimization in uncertain environments-A survey [J]. IEEE Trans on Evolutionary Computation, 2005, 9(3): 303-217
  • 2王洪峰,汪定伟,杨圣祥.动态环境中的进化算法[J].控制与决策,2007,22(2):127-131. 被引量:18
  • 3徐雪松,彭春华.动态环境下的免疫优化[J].计算机工程与应用,2007,43(1):27-29. 被引量:2
  • 4Nusawardhana, S H Zak. Simultaneous perturbation extremum seeking method for dynamic optimization problems [C]. In: Proc of the 2004 American Control Conference. Piscataway, NJ: IEEE Press, 2004. 2805-2810
  • 5T Blankwell, J Branke. Multi-swarm optimization in dynamic environments [C]. In: Proc of Applications of Evolutionary Computing, LNCS 3005. Berlin: Springer-Verlag, 2004. 489 -500
  • 6窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 7K E Parsopoulos, M Vrahatis. Unified particle swarm optimization in dynamic environments [C]. In: Proc of Evolutionary Workshops 2005, LNCS 3449, Berlin: Springer- Verlag, 2005. 590-599
  • 8T Blackwell, J Branke. Multi-swarms, exclusion, and anticonvergence in dynamic environment [J]. IEEE Trans on Evolutionary Computation, 2006, 10(4): 459-472
  • 9Z Bingul, A Sekmen, S Zein-Sabatto. Adaptive genetic algorithms applied to dynamic multiobjectlve programs [C]. In: Proc of Artificial Neural Networks Engineering Conf. Berlin: Springer-Verlag, 2000. 273-278
  • 10H Iason, W David. Dynamic multiohjective optimization with evolutionary algorithms: A forward-looking approach [C]. In: Proc of GECCO' 06. Berlin: Springer-Verlag, 2006. 1201- 1208

二级参考文献51

  • 1窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 2Cobb H.An investigation into the use of hypermutation as an adaptire operator in genetic algorithms having continuous,time-dependent nonstationaty environments Technical Report AIC-90-001[R],1990.
  • 3Grefenstette J J,Ramsey C L.An approach to anytime learning[C]//Sleeman D,Edwards P.Proceedings of the Ninth International Conference on Machine Learning.organ Kaufmann, 1992:189-195.
  • 4Ghosh A.Tsutsui S,Tanaka H.Function optimization in nonstationary environment using steady state genetic algorithms with aging of individuals[C]//Proceedings of the 1998 IEEE International Conference on Evolutionay Computation, 1998.
  • 5Simoes A,Costa E.Using genetic algorithms to deal with dynamic environments:a comparative study of several approaches based on promoting diversity[C]//Proceedings of the Genetic and Evolutionary Computation Conference, 2002-06.
  • 6Leandro N D,Fernando J V.Learning and Optimization Using the Clonal Selection Principle [J].IEEE Transactions on Evolutionary Computation, 2002,6 (3) : 239-251.
  • 7Gaspar A,Himbrunner B.From optimization to learning in changing environments :the pittsburgh immune classifier system [C]//International Conference ICARIS 2002.University of Kent at Canterbury,2002.
  • 8Gerratt S M,Walker J H.Genetic algorithms:Combining evolutionary and 'non'-evolutionary methods in tracking dynamic global optima[C].Proc of the Genetic and Evolutionary Computation Conf.San Francisco:Morgan Kaufmann Publishers,2002:359-366.
  • 9Simoes A,Costa E.Using GAs to deal with dynamic environments:A comparative study of several approaches based on promoting diversity[C].Proc of the Genetic and Evolutionary Computation Conf.San Francisco:Morgan Kaufmann Publishers,2002:698.
  • 10Tin'os R,Carvalho A.A genetic algorithm with gene dependent mutation probability for non-stationary optimization problems[C].Proc of 2004 Congress on Evolutionary Computing.Piscataway:IEEE Service Center,2004:1278-1285.

共引文献35

同被引文献166

引证文献14

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部