期刊文献+

样本优化核主元分析及其在水质监测中的应用 被引量:6

The Kernel Principal Component Analysis Based on Sample Optimization and Its Application in Water Quality Monitoring
在线阅读 下载PDF
导出
摘要 核主元分析(KPCA)方法通过核变换将输入空间映射到高维特征空间,在特征空间进行主元分析。由于KPCA不适合大样本数据建模与分析,因此建模数据的选取非常重要,合理的数据样本可以简化运算,提高核主元分析的诊断准确度。文章提出一种优化数据样本的KPCA方法,利用相似度函数的方法实现样本优化,再建立核主元分析模型,提取数据特征信息,并将该方法应用到水环境监测的传感器故障诊断中,通过试验分析,验证了该方法的有效性。 The kernel principal component analysis (KPCA) method can map the input space into the high dimensional feature space via kernel function and then make the principal component analysis in the feature space. The selection of modeling data samples is very important, that' s because the KPCA method is not suitable for the analysis of a large number of data samples. The appropriate data samples can reduce the calculation and improve the diagnostic accuracy. The kernel principal component analysis based on sample optimization is proposed in this paper, which can optimize the data samples using the similarity function and then establish the KPCA model, the data characteristic information is extracted via the model. The method is applied to the fault diagnosis of sensors of water quality monitoring. The result shows the efficiency of this method.
出处 《中国环境监测》 CAS CSCD 北大核心 2012年第2期92-96,共5页 Environmental Monitoring in China
基金 河海大学常州校区创新基金项目(XZX/09B002-02)
关键词 核主元分析 相似度函数 样本优化 水环境监测 传感器故障诊断 Kernel principal component analysis Similarity function Sample optimization Water quality monitoring Fault diagnosis
  • 相关文献

参考文献13

  • 1张宁红,黎刚,郁建桥,丁铭,徐亮.太湖蓝藻水华暴发主要特征初析[J].中国环境监测,2009,25(1):71-74. 被引量:45
  • 2Park S,Lee C S G.Fusion-based sensor faultdetection[C].In:Proceedings of IEEE InternationalSymposium on Intelligent Control,USA,1993.156-161.
  • 3赵志刚,赵伟.基于动态不确定度理论的多传感器系统传感器失效检测方法[J].传感技术学报,2006,19(6):2723-2726. 被引量:15
  • 4Dorr R,Kratz F.Detection isolation and identificationof sensor faults in nuclear power plants[J].IEEETransactions on Control Systems Technology,1999,5(1):42-60.
  • 5Marcel O,Robert B,Henk B V.Soft computingapplications in aircraft sensor management and flightcontrol law reconfiguration[J].IEEE Transactions onSystems Man,and Cybernetics-Part C:Applicationsand Reviews,2002,32(2):125-139.
  • 6Caliskan F,Hajiyev C.Innovation sequence applicationto aircraft sensor fault detection:Comparison ofchecking covariance matrix algorithms[C].Proceedings of the 38th Conference on Decision&Control,USA,1999.47-56.
  • 7Paraskevi A S,George N F.A statistical Method forthe detection of sensor abrupt faults in aircraft controlsystems[J].IEEE Transactions on Control SystemsTechnology,2008,16(4):789-798.
  • 8徐涛,王祁.基于小波包的多尺度主元分析在传感器故障诊断中的应用[J].中国电机工程学报,2007,27(9):28-32. 被引量:15
  • 9Shengwei Wang,Fu Xiao.AHU sensor fault diagnosisusing principal component analysis method[J].Energyand Buildings,2004,36:147-160.
  • 10Zhimin Du,Xinqiao Jin.Multiple faults diagnosis forsensors in air handling unit using Fisher discriminantanalysis[J].Energy Conversion and Management,2008,49:3654-3665.

二级参考文献41

共引文献90

同被引文献42

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部