期刊文献+

基于核主元分析和最小二乘支持向量机的软测量建模 被引量:23

Soft Sensor Modeling Based on KPCA and Least Square SVM
在线阅读 下载PDF
导出
摘要 软测量技术是工业过程控制和分析的有力工具,它的核心问题是如何建立学习速度快且泛化性能优良的软测量模型。提出了一种基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的软测量建模方法,利用核主元分析提取软测量输入数据空间中的非线性主元,然后用最小二乘支持向量机进行建模,不但降低模型复杂性,而且提高了模型泛化能力。最后将上述方法用于PTA结晶过程的软测量建模,仿真结果表明:与SVM、PCA-SVM建模方法相比,该KPCA-LSSVM方法具有学习速度快、跟踪性能好、泛化能力强等优点,是一种有效的软测量建模方法。 Soft sensor is necessary for industrial process control and analysis, and the core problem is how to construct appropriate model having fast convergence speed and good generalization performance. A kind of soft sensor method was proposed based on kernel principle component analysis (KPCA) and least square support vector machine (LSSVM), KPCA was applied to choose the nonlinear principal component of the model input data space, and LSSVM was applied to proceed regression modelling, which could not only reduce the complexity of calculation but could improve the generalization ability. The proposed KPCA-LSSVM was applied to predict the granularity of PTA. Simulation indicates that this method features high learning speed, good approximation and good generalization ability compared with SVM and PCA-SVM, and is proved to be an efficient modeling method.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3873-3875,3918,共4页 Journal of System Simulation
基金 国家973项目(2002CB312200) 上海市自然科学基金(05ZR14038) 上海科委科技攻关项目(04DZ11010 05DZ11C02) 上海市科委重大基础研究(05DJ14002)
关键词 软测量 核主元分析 最小二乘支持向量机 建模 soft sensor kernel PCA least square SVM modeling
  • 相关文献

参考文献12

  • 1徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,34(2):1-3. 被引量:50
  • 2B Scholkopf, A Smola, K R Mtiller. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation (S0899-7667),1998, 10(5): 1299-1319.
  • 3L J Cao, K S Chua, W K Chong, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine [J]. NeuroComputing (S0925-2312), 2003, 55(1): 321-336.
  • 4Vapnik, V N The Nature of statistical learning Theory [M]. New York: Springer-Verlag, 1995.
  • 5J A K Suykens, J Vandewalle. Least squares support vector machine classifiers [J]. Neural Processing Letters (S1370-4621), 1999, 19(3): 293-300.
  • 6Xi Li, Guangyi Cao, Xinjian Zhu. Modeling and control of PEMFC based on least squares support vector machines [J]. Energy conversion and management (S0196-8904), 2006, 47(7): 1032-1050.
  • 7Chi-Man Vong, Pak-kin Wong, Yi-Ping Li. Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference [J]. Engineering applications of artificial intelligence (S0952-1976), 2006, 19(3): 277-287.
  • 8杨延西,刘丁,辛菁.基于LS-SVM的机器人逆运动学建模[J].系统仿真学报,2006,18(5):1260-1262. 被引量:7
  • 9阎威武,朱宏栋,邵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003,15(10):1494-1496. 被引量:102
  • 10黄宴委,彭铁根.基于核主元分析的非线性动态故障诊断[J].系统仿真学报,2005,17(9):2291-2294. 被引量:19

二级参考文献35

  • 1叶美盈.基于最小二乘支持向量机建模的混沌系统控制[J].物理学报,2005,54(1):30-34. 被引量:10
  • 2于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 3王旭东,邵惠鹤.神经元网络建模与软测量技术[J].化工自动化及仪表,1996,23(2):28-31. 被引量:30
  • 4Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69.
  • 5Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385.
  • 6Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition.
  • 7Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 9Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995.
  • 10V N Vapnik,S E Golowich.A.Smola.Support Vector Method for Function Approximation,Regression Estimation,and Signal Processing[C].In Advances in Neural information processings systems 8,San Mateo,CA,1996.Morgan Kaufmann Publishers.

共引文献238

同被引文献300

引证文献23

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部