期刊文献+

基于改进免疫进化算法的云计算任务调度 被引量:18

Task Scheduling in Cloud Computing Based on Improved Immune Evolutionary Algorithm
在线阅读 下载PDF
导出
摘要 针对云计算环境下内置任务调度方法的低效问题,提出一种基于改进免疫进化算法的任务调度算法,利用人工免疫进化原理完成任务调度的全局优化。通过将粒子群优化算法作为算子嵌入免疫进化算法中,避免陷入局部最优,改善收敛效果,减少任务调度时间开销。以CloudSim作为仿真平台进行模拟,实验结果表明,改进的免疫进化算法能大幅提高云计算任务调度效率。 The task scheduling method built-in cloud computing environment is inefficient. A method based on improved immune evolutionary algorithm is proposed for task scheduling, which roots from artificial immune evolutionary theory to solve global optimize task scheduling on cloud computing. The improved immune evolutionary algorithm(Particle Immune Evolutionary Algorithm)PIEA introduces Particle Swarm Opt.imization(PSO) into immune evolutionary algorithm. PIEA improves the optimization ability compared with traditional immune evolutionary algorithm, and avoids local Optimization, the convergence of this method is better, and time consuming of task scheduling is reduced. The CloudSim simulation platform is chosen, and results indicate that PIEA can provide efficient task scheduling strategy.
出处 《计算机工程》 CAS CSCD 2012年第9期208-210,共3页 Computer Engineering
基金 中央高校基本科研业务费专项基金资助项目(JUSRP10928) 江苏省普通高校研究生创新计划基金资助项目(CXLX11_0490) 无锡市科技支撑社会发展基金资助项目(CSE01014)
关键词 云计算 免疫进化 粒子群优化算法 任务调度 cloud computing immune evolutionary Particle Swarm Optimization(PSO) algorithm task scheduling
  • 相关文献

参考文献13

二级参考文献126

共引文献1810

同被引文献114

  • 1孙林夫.面向网络化制造的协同设计技术[J].计算机集成制造系统,2005,11(1):1-6. 被引量:47
  • 2董旭,魏振军.一种加权欧氏距离聚类方法[J].信息工程大学学报,2005,6(1):23-25. 被引量:33
  • 3陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:316
  • 4Mell J, Grance T. The NIST definition of cloud computing[EB/OL]. [2011-10-20]. http://csrc. nist. gov/publications/drafts/800-145/Draft- SP-800-145_cloud-definition. pdf.
  • 5Iosup A,Ostermann S, Yigitbasi M N. Performance analysis ofcloud computing services for many-tasks scientific computing[J]. IEEE Trans, on Parallel and Distributed System, 2011,22 (6): 931-945.
  • 6Boss G, Malladi P. Cloud computing [EB/OL]. [2011-10-20].http://www. jbm. com/developerworkers/websphere/zones/hi-pods/.
  • 7Michael A, Armando F, Rean G, et al. Above the Clouds: A Berkeley View of Cloud Computing I-R/ OL-]. UC Berkeley Reliable Adaptive Distributed Sys- tems Laboratory. (2012-06-15)1-2009-02-10-]. http:// www. eees. berkeley, edu/Pubs/TeehRpts/2009/EE- CS-2009-28. htmk.
  • 8雷葆华,饶少阳,江峰,等.云计算解码:技术架构和产业运营[M].北京:电子工业出版社,2011:132-135.
  • 9D Dutta, R C Joshi. A Genetic-algorithm approach to cost-based multi-QoS job scheduling in cloud compu- ting Environment I-C] ff International Conference and Workshop on Emerging Trends in Technology. Mum- bai. ACM, 2011 . 422-427.
  • 10朱宗斌,杜中军.基于改进GA的云计算任务调度算法[J/OL].计算机工程与应用.(2012-06-15)[2011-12-09].http://www.cnki.net/kcms/detail/11.2127.TP.20111209.1002.052.html.

引证文献18

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部