期刊文献+

基于评分支持度的最近邻协同过滤推荐算法 被引量:5

Collaborative filtering recommendation algorithm based on nearest-neighborhood and rating support
在线阅读 下载PDF
导出
摘要 针对传统协同过滤推荐算法存在推荐质量不高的局限性,提出一种基于评分支持度的最近邻协同过滤推荐算法。该算法用调整后的共同评分次数动态调节相似度的值,以更真实地反映彼此间的相似性。然后计算目标用户和目标项目的最近邻集合及各自评分和支持度,根据评分支持度自适应调节基于目标用户和目标项目的评分对最终推荐结果影响的权重。与其他算法的对比实验结果表明,该算法能有效避免传统相似度度量方法存在的问题,从而提高了推荐质量。 To solve the shortcomings of the traditional collaborative filtering recommendation algorithms,this paper proposed an improved collaborative filtering recommendation algorithm for the nearest neighbors based on rating support.First on the basis of correlation similarity,this algorithm adopted an improved similarity measure method which could dynamically adjust the value of similarity according to the modified common rating.Then,computed predicting rating and rating support of the active user and item based on the nearest neighbor sets.Finally,according to the rating support data,adjusted different self adaptive influence weights of the neighbor sets of the active user and the active item,and obtained the final recommendation results.The experimental results show that compared with the other recommendation algorithms,the algorithm can effectively avoid the defects of traditional similarity measure and improve the recommendation quality.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1723-1725,1728,共4页 Application Research of Computers
基金 重庆市教委科学技术资助项目(KJ111304) 重庆市涪陵区科委资助项目(FLKJ 2011ABA2043)
关键词 协同过滤 最近邻居 评分支持度 相似度 collaborative filtering nearest neighborhood rating support similarity
  • 相关文献

参考文献16

  • 1LINDEN G,SMITH B,YORK J.Amazon.com recommendations:item to item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80.
  • 2ADOMAVICIUS G,TUZHILIN A.Toward the next generation of re-commender systems:a survey of the state-of-the art and possible exten-sions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749.
  • 3BELL R M,KOREN Y.Improved neighborhood-based collaborative filtering[C]//Proc of the13th ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining.2007:7-14.
  • 4陈逸,于洪.一种基于相同评分矩阵的协同过滤补值算法[J].计算机应用研究,2009,26(12):4513-4515. 被引量:5
  • 5LEE H C,LEE S J,CHUNG Y J.A study on the improved collabora-tive filtering algorithm for recommender system[C]//Proc of the5th International Conference on Software Engineering Research,Manage-ment and Applications.2007:297-304.
  • 6SARWAR B M,KARYP I S G,KONSTAN J,et al.Item-based col-laborative filtering recommendation algorithms[C]//Proc of the10th International World Wide Web Conference.2001:285-295.
  • 7XUE G R,LIN C X,YANG Q,et al.Scalable collaborative filtering using cluster-based smoothing[C]//Proc of the28th Annual Interna-tional ACM SIGIR Conference on Research and Development in Infor-mation Retrieval.New York:ACM Press,2005:114-121.
  • 8WANG Jun,De VRIES A P,REINDERS M J T.Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]//Proc of the29th Annual International ACM SIGIR Conferenceon Research and Development in Information Retrieval.New York:ACM Press,2006:501-508.
  • 9汪静,印鉴,郑利荣,黄创光.基于共同评分和相似性权重的协同过滤推荐算法[J].计算机科学,2010,37(2):99-104. 被引量:45
  • 10黄裕洋,金远平.一种综合用户和项目因素的协同过滤推荐算法[J].东南大学学报(自然科学版),2010,40(5):917-921. 被引量:21

二级参考文献86

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2张巍,刘鲁,葛健.一种基于粗集的协同过滤算法[J].小型微型计算机系统,2005,26(11):1971-1974. 被引量:11
  • 3赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 4邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:149
  • 5陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 6LEE H C. A study on the improved collaborative filtering algorithm for recommender system [ C ]//Proc of the 5th International Conference on Software Engineering Research Management and Applications. Washington DC : IEEE Computer Society, 2007:297- 304.
  • 7WATANABE T, KATAYAMA S, FUJIOKA R. Improvement of collaborative filtering based on fuzzy reasoning model [ C ]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 2006 : 4790- 1795.
  • 8ALMOSALLAM I A, SHANG Yi. A new adaptive framework for collaborative filtering prediction[ C ]//Proc of IEEE Congress on Evolutionary Computation. 2008:2725- 2733.
  • 9BREESE J S, HECKERMAN D, KADI C. Empircal analysis of predictive algorithms for collaborative filtering [ C ]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:43-52.
  • 10HUANG Chong-ben, GONG Song-jie. Employing rough set theory to alleviate the sparsity issue in recommender system [ C ]//Proc of the 7th International Conference on Machine Learning and Cybernetics. 2008 : 1610- 1614.

共引文献362

同被引文献52

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:148
  • 2张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:200
  • 3ADOMA VICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions l 1]. IEEE Transactions on Knowledge and Data Engi?neering, 2005, 17( 6): 734 -749.
  • 4JIA C X, LIU R R, SUN D, et al. A new weighting method in net?work-based recommendation[J]. Physica A - Statistical Mechanics and Its Applications, 2008,387(23): 5887 -5891.
  • 5CHO Y S, MOON S, RYU K H. Mining association rules using RFM scoring method for personalized u-commerce recommendation system in emerging data[C] I I Proceedings of International Confer?ence on Modeling and Simulation. Berlin: Springer-verlag, 2012: 190-198.
  • 6NADSCHLAGER S, KOSORUS H, BOGL A, et al. Content-based recommendations within a QA system using the hierarchical structure of a domain-specific taxonomy[C] I I Proceedings of the 23rd Inter?national Workshop on Database and Expert Systems Applications. Washington, DC: IEEE Computer Society, 2012: 88 -92.
  • 7KWON HJ, HONG K S. Personalized smart TV program recommen?der based on collaborative filtering and a novel similarity method[J] . IEEE Transactions on Consumer Electronics, 20 II, 57 ( 3) : 1416 - 1423.
  • 8MU X W, CHEN Y, YANGJ A, et al, An improved similarity al?gorithm based on hesitation degree for user-based collaborative filte?ring[C] I I Proceedings of the 5th International Symposium on Intel?ligence Computation and Applications. Berlin: Springer-verlag, 2010: 261 - 271.
  • 9SARWAR B, KARYPIS G, KONSTANJ, et al, Item-based collabo?rative filtering recommendation algorithms[C] 1/ Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295.
  • 10YAMASHITA A, KAWAMURA H, SUZUKI K. Adaptive fusion meth?od for user-based and item-based collaborative filtering[J]. Advances in Complex Systems, 2011, 14(2): 133 -149.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部