期刊文献+

用神经网络建立蜡油与渣油催化裂化产品产率数学模型 被引量:4

ESTABLISHING A MATHEMATICAL MODEL FOR CATALYTIC CRACKING PRODUCT SLATESOF HEAVY OILSBY USING ARTIFICIAL NEURAL NETWORKS
在线阅读 下载PDF
导出
摘要 基于在小型固定流化床反应装置上进行催化裂化反应的试验数据 ,利用人工神经网络的方法将蜡油与渣油催化裂化各种产物的产率与原料油的组成、反应条件进行关联 ,建成蜡油与渣油催化裂化反应数学模型。研究结果表明 ,该模型能很好地拟合试验数据 ,预测不同原料油在不同反应条件下催化裂化的产品产率。 Thepurposeofthework isto establishing mathematicalmodelforpredicting catalytic cracking product slates of heavy oils by using artificialneuralnetworks.Experiments were carried on a fixed fluidized bed reactor.The product yields were correlated with the structuralgroup compositions of heavy oilsand theoperating conditionsby using theartificialneuralnetworksforthemodelestablishment. The results showed thatthe proposed modelcan simulate the experimentalyields and predictthe product yields for various heavy oils atdifferentoperating conditions.
作者 冯玉海 任杰
出处 《石油炼制与化工》 EI CAS CSCD 北大核心 2000年第3期49-53,共5页 Petroleum Processing and Petrochemicals
关键词 催化裂化 神经网络 重油 产率 数学模型 渣油 catalytic cracking artificialneuralnetworks heavy oil yield mathematicalmodel
  • 相关文献

参考文献13

二级参考文献102

共引文献759

同被引文献25

  • 1钱伯章.延迟焦化技术的发展前景[J].石油规划设计,2005,16(4):10-12. 被引量:9
  • 2刘火安,徐刚,任凌燕,董文丽.以双水杨醛缩二氨基硫脲合铜(Ⅱ)为载体硫氰酸根离子选择性电极的研究及其应用[J].分析化学,2010,38(12):1801-1804. 被引量:6
  • 3Wold S. Chemometrics:What do we mean with it, and what do we want from it? [J]. Chemometrics and Intelligent La- boratory Systems, 1995,30(1): 109-115.
  • 4Xu Chunming, Gao Jinsen, Zhao Suoqi, et al. Correlation be- tween feedstock SARA components and FCC product yields [J]. Fuel,2005,84(6) ,669-674.
  • 5Bollas G M, Papadokonstadakis S, Michalopoulos J, et al. Using hybrid neural networks in scaling up an FCC model from a pilot plant to an industrial unit[J]. Chemical Engi- neering and Processing, 2004,82 (8/9) : 697-713.
  • 6Bollas G M, Papadokonstantakis S, Michalopoulos J, et al. A Computer-aided tool for the simulation and optimization o{ the combined HDS-FCC processes[J]. Chemical Engineering Research and Design, 2004,82 (7) : 881-894.
  • 7Michalopoulos J, Papadokonstadakis S, Arampatzis G, et al. Modelling of an industrial fluid catalytic cracking unit using neural networks[J]. Chemical Engineering Research and De- sign,2001,79(2) : 137-142.
  • 8Varmuza K. Introduction to Multivariate Statistical Analysis in Chemometrics[M]. CRC Press,2009 : 103-194.
  • 9吴飞跃,翁惠新,罗世贤.FDFCC工艺中汽油提升管催化裂化反应动力学模型研究[J].石油炼制与化工,2007,38(10):59-63. 被引量:13
  • 10Zhou Xiaolong, Di Xi, Yu Guoxian, et al. Simulation of de- layed cokingFJ~. Petroleum Science and Technology, 2010,28 (3) :277-285.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部