期刊文献+

基于HMM的多态系统状态识别模型研究 被引量:4

Study of Multi-State System States Recognition Model Based on HMM
在线阅读 下载PDF
导出
摘要 在分析装备三级工作模式基础上,建立了多态系统的可靠性向量模型,基于隐马尔可夫模型(HMM)原理分析了多态系统的状态转移过程,并建立了多状态系统HMM模型,在此基础上利用MATLAB对系统隐藏状态转移和观察状态之间的关系进行了仿真.仿真结果表明,在一定观察序列的情况下,该模型可以实现较高的状态识别率和状态预测精度,为科学合理地诊断多状态系统的潜在故障提供了技术支持,具有重要的理论意义和应用价值. Based on the analysis of equipped with three operating modes, a multistate system reliability vector model is established. According to Hidden Markov Model (HMM) theory the state transition process of the multi - state system is analyzed, and a HMM model of the multstate system is built up. On this basis, the relation between hidden state transition and observation state is simulated by using MATLAB. Simulation results show that, in the case of a certain observation sequence, the model can achieve higher recognition rate and the state prediction accuracy and provide a technical support for the scientific and rational diagnosis of po- tential faults of multistate system.
出处 《测试技术学报》 2012年第2期154-157,共4页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(60971092)
关键词 多状态 状态识别 HMM 可靠性分析 multistates state recognition HMM reliability analysis
  • 相关文献

参考文献10

二级参考文献44

共引文献41

同被引文献32

  • 1谢湘,匡镜明.Mandarin Digits Speech Recognition Using Support Vector Machines[J].Journal of Beijing Institute of Technology,2005,14(1):9-12. 被引量:2
  • 2李攀,杨玮龙,厉剑.基于DTW/SVM的语音识别系统在DSP中的实现[J].电声技术,2006,30(9):40-44. 被引量:4
  • 3何珏,刘加.基于汉语语音音位的HMM建模方法[J].清华大学学报(自然科学版),2007,47(4):518-521. 被引量:1
  • 4邓乃杨,田英杰.支持向量机一理论、算法与拓展[M].北京:科学出版社,2009.
  • 5苏毅,吴文虎,郑方,等.基于支持向量机的语音识别研究[C].第六届全国人机语音通讯学术会议,深圳,2001.
  • 6Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995, 20(3): 273-297.
  • 7Arun K M, Gopal M. Reduced one-against-all method for multiclass SVM classification[J]. Expert Systems with Application, 2011, 38: 14238-14248. Acta Electronica Sinica, 2010, 38(7): 1626-1633.
  • 8Domenico C, Rostita G. Kernel based support vector machine via semidefinite programming: Application to medical diagnosis[J]. Computer & Operations Research, 2010, 37: 1389-1394.
  • 9Liu J, Wang Z, Xiao X. A hybrid SVM/DDBHMM decision fusion modeling for robust continuous digital speech recognition[J]. Pattern Recognition Letters, 2007, 28(8): 912-920.
  • 10Solera-Urefia R, Martin-Iglesias D, Gallardo-Antolin A, et a] / Robust ASR using support vector machines[J]. Speec Communication, 2007, 49(4): 253-267.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部