期刊文献+

概率图模型及其图像与视频应用研究 被引量:1

Probabilistic Graphical Model and Its Application in Image and Video Information Processing
在线阅读 下载PDF
导出
摘要 概率图模型及其应用作为一个具有挑战性的研究领域目前已成为一个新的研究热点。概率图模型为解决智能信息领域的不确定性问题提供了重要途径。尽管目前概率图模型还处于不断发展之中,但近年来基于概率图模型的图像和视频智能信息处理的应用研究受到人们的关注,出现了许多有效的算法,这些算法为解决一些传统的图像和视频智能信息处理问题提供了新的途径。本文首先对概率图模型的3种重要表现形式、特性和主要技术进行了分析和讨论,在此基础上,以概率图模型在图像和视频中的应用为线索,对目前基于概率图模型的图像和视频智能信息处理的主要技术进行了概述和比较研究;最后对概率图模型所存在的一些问题及进一步的发展进行了展望。 Probabilistic graphical model(PGM) and its application have become a new hot-spot as a challenging research. It provides an important means for resolving the uncertainty of intelligent information field. Although PGM is still in its development, the application of intelligent information processing of images and videos based on PGM has emerged and many effective algorithms has emerged which provide a new strategy to solve for the traditional problems. Based on the three important expressions, the characteristics and the main technology of PGM, we analyze and introduce the primary technology of intelligent information processing of images and videos based on PGM. Finally, we discuss the disadvantages and development trend of PGM.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第9期1712-1720,共9页 Journal of Image and Graphics
基金 辽宁省自然基金项目(20072156) 辽宁省教育厅科学技术研究项目(20060486) 辽宁"百千万人才工程"培养经费 南京邮电学院图像处理与图像通信江苏省重点实验室开放基金(ZK207008)
关键词 概率图模型 贝叶斯网络 马尔可夫网络 隐马尔可夫网络 图像 视频 probabilistic graphical model (PGM), bayesian network, Markov network, hidden Markov network,image, video
  • 相关文献

参考文献31

  • 1Wang Y,Vassileva J. Bayesian network-based trust model[A]. In: Proceedings of IEEE International Conference on Web Intelligence [C], Halifax, Canada, 2003:372-378.
  • 2Chen J C,Wang Y C,Maa C S, et al. Network-side mobile position location using factor graphs [ J ]. IEEE Transactions on Wireless Communications, 2006, 5(10):2696-2704.
  • 3Whittaker J. Graphical Models in Applied Multivariate Statistics [M]. New York: John Wiley and Sons Inc, 1990.
  • 4Richardson M, Demingos P. Markov logic networks [ J ]. Machine Learning. 2006, 62 ( 1 ) : 107-136.
  • 5Domingos P. Learning, logic and probability: A unified view [ A ]. In:Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence : Trends in Artificial Intelligence [ C ], Guilin, China, 2006,1:53.
  • 6Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference [ M ]. San Mateo, California, USA: Morgan Kaufmann Publishers Inc, 1985.
  • 7肖泽磊,卢悉早.基于马尔可夫链系统的上证指数探讨[J].科技创业月刊,2005,18(9):27-28. 被引量:3
  • 8张瑞,迟道才,王晓瑜,李炎,石丽忠.基于马尔可夫过程的改进残差灰色灾变预测模型研究[J].中国农村水利水电,2008(1):7-10. 被引量:17
  • 9盛骤,谢式千,潘承毅.概率论与数理统计[M].浙江:高等教育出版社,2003.
  • 10Pearl J. Bayes and Markov Networks: A Comparison of Two Graphical Representations of Probabilistic Knowledge [ R ]. 860024 ( R- 46 ) , Los Angeles, California, USA:University of California at Los Angeles, 1986.

二级参考文献141

共引文献73

同被引文献17

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部