期刊文献+

动态随机球的标定误差与测量次数的关系 被引量:1

The Relation between Residual Error and the Number of Measurements in the Random Ball Test
在线阅读 下载PDF
导出
摘要 本文介绍了随机球标定技术的原理。针对随机球标定方法的两种方法(静态法和动态法),本文分别分析了两种方法的标定误差与测量次数之间的关系。依据数理统计原理和合理的假设,理论分析表明静态法是一种特殊的动态法。两种方法的标定误差随测量次数增加呈N-1/2递减。针对动态法,本文进行了动态法随机球标定实验。实验结果表明,动态法的标定误差与测量次数之间近似符合N-1/2规律。 The principle of the random ball test technology is introduced.There are two types of random ball test technologies.One is called static method;the other is called dynamic method.The relation between calibrating error and the number of measurements in these two methods is analyzed separately.Based on statistics and reasonable assumption,the analysis shows that static method is one of the special dynamic methods.In both of these two methods,the calibrating error drops off as N-1/2 with the number of measurements increases.The experiment of random ball test is done using dynamic method.The experiment result shows that the calibrating error drops off as N-1/2 with the number of measurements increasing approximately.
出处 《光电工程》 CAS CSCD 北大核心 2012年第3期83-87,共5页 Opto-Electronic Engineering
关键词 测量次数 标定误差 随机 数理统计原理 标定实验 动态法 标定技术 标定方法 random ball calibrating error number of measurements
  • 相关文献

参考文献6

  • 1Ulf Griesmann, Quandou Wang, Johannes Soons, et al. A Simple Ball Averager for Reference Sphere Calibrations [J]. Pro. of SPIE(S0277-786X), 2005, 5869: 58690S-1-8.
  • 2邢廷文,何国良,舒亮.193nm移相点衍射干涉仪的测量误差分析[J].光电工程,2009,36(2):67-72. 被引量:9
  • 3马冬梅,陈土泉.点衍射波前位相的测评[J].光学精密工程,2010,18(11):2390-2397. 被引量:10
  • 4ZHOU Ping, Burge James H. Limits for interferometer calibration using the random ball test [J]. Pro. of SPIE(S0277-786X), 2009, 7426: 74260U-10-12.
  • 5Katherine Creath, Wyant James C. Absolute measurement of surface roughness [J]. Applied Optics(S0003-6935), 1990, 29(26): 3823-3827.
  • 6Daniel Malacara. Optical Shop Testing: Third Edition [M]. John Wiley & Sons, Inc, 2006.

二级参考文献25

  • 1亓波,陈洪斌,刘顺发.Zernike多项式波面拟合的回归分析方法[J].光学精密工程,2007,15(3):396-400. 被引量:20
  • 2Lee Sang Hun, Naulleau Patrick, Goldberg Kenneth A, et al. Phase-shifting Point-diffraction Interferometry at 193 nm [J]. Applied Optics(S0003-6935), 2000, 39(31): 5768-5771.
  • 3Medecki H, Tejnil E, Goldberg K A, et al. Phase-shifting Point Diffraction Interferometer [J]. Optics. Letters(S0146-9592), 1996, 21(19): 1526-1528.
  • 4Naulleau Patrick, Goldberg K A. Extreme-ultraviolet Phase-shifting Point Diffraction Interferometer: a Wave-front Metrology Tool with Subangstrom Reference-wave Accuracy [J]. Applied Optics(S0003-6935), 1999, 38(35): 7252-7263.
  • 5NaulleauPatrick, GoldbergKA. Characterization of the Accuracy of EUVPhase-shifting Point Diffraction Interferometry [J]. Proc. ofSPIE, 1998, 3331: 114-123.
  • 6Smartt R N, Strong J. Point Diffraction Interferometer [J]. Opt. Soc. Am(S0740-3232), 1974, 62: 737-742.
  • 7Naulleau Patrick, Goldberg Kenneth A. Dual-domain Point Diffraction Interferometer [J]. Applied Optics(S0003-6935), 1999, 38(16): 3523-3532.
  • 8Sugisaki Katsumi, Zhu Yucong. Present Status of the ASET At-wavelength Phase-shi~ng Point Diffraction Interferometer [J]. Proc. of SPIE, 2000, 4146: 47-53.
  • 9Gong Qian, Geary Josehp. Modeling Point Diffraction Interferometers [J]. Proc. of SPIE, 1995, 2544: 358-375.
  • 10Born M, WolfE. Principles of Optics [M]. New York: Pergamon Press, 1959.

共引文献17

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部