期刊文献+

一种动态多种群粒子群优化算法 被引量:1

A Multi-specie Particle Swarm Optimization Algorithm with Dynamic
在线阅读 下载PDF
导出
摘要 粒子群优化算法PSO目前仍存在着早熟收敛和收敛速度较慢的难题,提出一种新的PSO改进算法。该算法利用水平集对PSO的每一代粒子按照适应度划分成两个子种群,对两种群采用不同进化策略,并适当进行信息交换,通过采用这种策略提高了算法的收敛速度和精度,同时也减少早熟发生的机会。实验证明,这种改进的算法是非常有效的。 Recently there still exist some problems in particle swarm optimization (PSO) algorithm including prematurity and slow convergence.To solve these problems, an improved PSO based on level set is presented. This algorithm used level set to divided particles of each generation into two child populations according to their fitness, then the two child populations use different evolutionary strategy to evolve and exchange information appropriately, so this algorithm accelerate the convergence speed , enhanced accuracy of the algorithm and reduce the chance of premature. Experiment shows that this algorithm is very effective.
作者 王洪涛 任燕
出处 《微计算机信息》 2011年第12期144-146,96,共4页 Control & Automation
基金 河南理工大学青年基金项目(Q2011-32)
关键词 粒子群优化算法 动态 维信息 水平集 多种群 particle swarm optimization algorithm dynamic dimension information level set multi-specie
  • 相关文献

参考文献10

  • 1Kennedy J,Eberhert R.Particle Swarm optimization [C].IEEE International Conference on Neural Networks.1995:1942-1948.
  • 2Shi.Y,Eberhart.R.C.A modified particle swarm optimizer[C].Proc the IEEE International Conference on Evolutionary Compution .NJ: IEEE Press, 1998:69-73.
  • 3Shi Y H and Eberhart R C.Parmneter selection in particle swarm Optimization[C]. Annual Conference on Evolutionary Programming, SanDiego,March 1998.
  • 4M.Clerc and J.Kennedy.The Particle Swarm:explosion,stability and convergence in a Multi--Dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation.Feb.2002,6:58-73.
  • 5高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 6Huiyuan F.A modification to particle swarm optimization algorithm[J].Engineering Computations, 2002,19(8):970-989.
  • 7宋超,葛洪伟.基于水平集的PSO算法的改进[J].计算机应用与软件,2008,25(4):269-270. 被引量:1
  • 8Nikos P,Rachid D.Geodesic active contours and level sets for the detection and tracking of moving objects [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):301-312.
  • 9Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]. Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, N J: IEEE Press, 2001,101-106.
  • 10曾祥萍,朱云龙,南琳.基于群体智能策略的编队控制[J].微计算机信息,2006(09Z):210-212. 被引量:2

二级参考文献17

  • 1胡利平,许永城,高文,胡亮.蚁群神经网络在鱼病专家系统中的应用研究[J].微计算机信息,2005,21(07X):149-151. 被引量:11
  • 2李庆华,杨世达,阮幼林.基于水平集的遗传算法优化的改进[J].计算机研究与发展,2006,43(9):1624-1629. 被引量:12
  • 3蔡自兴 等.人工智能及其应用[M].清华大学出版社,2002..
  • 4[1]Eberhart R C Kennedy J.A new optimizer using particles swarm theory.Proc Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43
  • 5[2]Shi Y H,Eberhart R C.A modified particle swarm optimizer.IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,May 4-9,1998:69-73
  • 6[4]Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space.IEEE Transactions on Evolutionary Computation,2002,6(1):58-73
  • 7Brett J Y, Randal W B, Jed M K. A Control Scheme for Improving Multi-Vehicle Formation Maneuvers. American Control Conference, Arlington, VA, June 25-27, 2001.
  • 8Fujimura, K, Route planning for mobile robhs admits moving obstacles [A]. In: Proceedings of the 1992 IEEE/RSJ International Conference on intelligent Robots and Syatems [C]. Raleigh, 1992,433-438.
  • 9Fiorini, P, Shiller, Z, Motion planning in dynamic environments using velocity obstacles [J].International Journal of Robotics Research, 1998,17(7),760-772.
  • 10Kennedy, J, Eberhart,R, Particle Swarm Optimization, In: Proceedings of IEEE International Conference on Neural Networks,Perth, Australia. Vol. 4, 1995, 1942-1948.

共引文献19

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部