期刊文献+

PSO优化算法演变及其融合策略 被引量:15

Evolvement of Particle Swarm Optimization and its combination strategy
在线阅读 下载PDF
导出
摘要 分析了粒子群优化算法公式的演变以及相关参数,包括基本算法、加惯性权重的PSO以及加收缩因子的PSO。并对它与其它智能算法(模拟退火、遗传算法、蚁群算法等)的融合进行了探讨,指出目前PSO的数学研究范畴仅限于收敛性的研究。 This paper analyzes the evolvement of Particle Swarm Optimization and related parameters,including basic algorithm, PSO with inertia weight and PSO with constriction factor,then discusses the combination strategy with other intelligent methods (simulated annealing,genetic algorithm,ant colony optimization) and points out the research about mathematics field of PSO is the convergence.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第7期90-92,共3页 Computer Engineering and Applications
基金 教育部高等学校科技创新工程重大项目培育资金项目
关键词 粒子群优化 模拟退火 遗传算子 蚁群优化算法 Particle Swarm Optimization (PSO) simulated annealing genetic operator ant colony optimization
  • 相关文献

参考文献23

  • 1Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proceedings IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995,Ⅳ:1942-1948.
  • 2Carlisle A,Dozier G.An off-the-shelf PSO[C]//Proceedings of the Particle Swarm Optimization Workshop,2001:1-6.
  • 3Eberhart R C,Shi Y.Comparison between genetic algorithms and Particle Swarm Optimization[M]//Porto V W,Saravanan N,Waagen D,et al.Evolutionary Programming Ⅶ.[S.l.]:Springer,1998:611-616.
  • 4Shi Y,Eberhart R C.Parameter selection in Particle Swarm Optimization[C]//Porto V W,Saravanan N,Waagen D,et al.Evolutionary Programming Ⅶ.[S.l.]:Springer,1998:611-616.
  • 5Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in Particle Swarm Optimization[C]//Proceedings of the Congress on Evolutionary Computating,2000:84-88.
  • 6王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948. 被引量:80
  • 7王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:87
  • 8Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1999:1951-1957.
  • 9刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 10康立山 谢云 尤矢勇.模拟退火算法[M].北京:科学出版社,1994.150-151.

二级参考文献88

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:222
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 4[1]Eberhart R C Kennedy J.A new optimizer using particles swarm theory.Proc Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43
  • 5[2]Shi Y H,Eberhart R C.A modified particle swarm optimizer.IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,May 4-9,1998:69-73
  • 6[4]Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space.IEEE Transactions on Evolutionary Computation,2002,6(1):58-73
  • 7R C Eberhaxt and J Kennedy. A New Optimizer Using Particles Swarm Theory[C]. Proc Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 8Y H Shi and R C Eberhart. A Modified Partide Swama Optimizer[c].IEEE International Conference on Evolutionary Computation, Anchorage,Alaska, May 4-9,1998.
  • 9R C Eberhart and J Kennedy. A New Optimizer Using Particles Swarm Theory[C] Proc Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 10Y H Shi and R C Eberhart. A Modified Particle Swama Optimizer[C].IEEE International Conference on Evolutionary Computation, Anchoeage,Alaska, May 4 - 9,1998.

共引文献946

同被引文献138

引证文献15

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部