期刊文献+

基于径向基神经网络的中厚板热弯成形收缩特性分析 被引量:10

Analysis of Shrinkage Characteristics of Medium Plate After Hot Bending Based on Radial Basis Function Neural Network
原文传递
导出
摘要 针对中厚钢板热弯成形冷却收缩变形问题,对影响变形的主要因素进行了分析。采用拉丁超立方抽样与有限元数值模拟相结合的方式得到试验样本数据,并在此基础上利用径向基函数神经网络建立收缩变形量的预测模型。预测值与试验值相比,最大误差小于1.5%,表明该预测模型的有效性。最后根据RBF神经网络预测的收缩变形量,以冷却过程中有限元节点的位移矢量关系为依据,对模具型面进行了补偿修正。结果表明,采用修正后的模具生产出的产品尺寸误差小于0.05%,满足形状精度的要求。 According to the problem of shrinkage and deformation of medium plate in cooling process after hot bending,the main factors influencing deformation were analyzed.The sample data were obtained using the method of combination with Latin Hypercube Sampling and finite element simulation.The predicting model of shrinkage deformation was set up based on the above analysis.The predicted value of RBF model was compared with test value,the error is smaller than 1.5% and the RBF predicting model has much higher precision.At last,the compensation of deformation on the die surface was made based on the displacement vector of node during the cooling process and the predicting deformation by using RBF model.The results show that the geometric error of the part produced by the modified die is lower than 0.05% and the accuracy can meet the production requirement.
作者 张渝 安治国
出处 《热加工工艺》 CSCD 北大核心 2012年第3期22-24,共3页 Hot Working Technology
基金 重庆市教委科学技术研究项目(KJ100414)
关键词 热弯曲 收缩变形 RBF神经网络 数值模拟 hot bending shrinkage deformation RBF neural network numerical simulation
  • 相关文献

参考文献6

二级参考文献23

共引文献86

同被引文献34

  • 1李春天,罗怡.非等厚异种钢电阻点焊焊点成形及神经网络预测[J].热加工工艺,2009,38(1):121-123. 被引量:10
  • 2GB/T10125-1997,ICS25.220.40-1997,人造气氛腐蚀试验盐雾试验标准[S].
  • 3Sungsau So, Martin Karplus. Evolutionary optimization inquantitative structure-activity relationship : An application of ge-netic neural networks [J]. Journal of Medicinal Chemistry,1996,39 (7):1524-1526.
  • 4Ban C L,He Y D,Shao X,et al. Effect of pretreatment onelectrochemical etching behavior of AI foil in HCI-H2SO, [J]. Nonferrous Met, Soc.China, 2013,23(4) : 1039-1045.
  • 5Xiao R,Yan K. Tunnel morphology of aluminum foil etched by a two-step DC etching method [J]. Corrosion Science,2008.50 (11):3256-3260.
  • 6Ding S F,Su C Y,Yu J Z. An optimizing BP neural network algorithm based on genetic algorithm [J]. Artif lntell Rev, 2011,36(2) : 153-162.
  • 7Xiao H F,Tian Y L. Prediction of mine coal layer spontaneous combustion danger based on genetic algorithm and BP neural networks[J]. Procedia Engineering,2011,26:139-146.
  • 8McCafferty E. Sequence of steps in the pitting of aluminum by chloride ions[J]. Corrosion Science,2003,45(7):1421-1438.
  • 9孔涛,王佳,钟莲.组合人工神经网络模型预测海水腐蚀速度的研究[J].腐蚀科学与防护技术,2008,20(1):58-61. 被引量:13
  • 10刘艳侠,高新琛,张国英,郭怀红.BP神经网络对3C钢腐蚀性能的预测分析[J].材料科学与工程学报,2008,26(1):94-97. 被引量:32

引证文献10

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部