期刊文献+

曲波变换用于磨粒图像不变矩的提取 被引量:2

Invariant moment extraction by curvelet transform for wear particle images
原文传递
导出
摘要 曲波变换(curvelet)具有各向异性和良好的曲线奇异性表达能力。为了克服Hu不变矩和不变小波矩在表达铁谱磨粒形貌信息方面的不足,将曲波变换引入磨粒特征提取过程,并与Hu不变矩结合,提出一种基于曲波变换的磨粒图像不变矩提取方法。首先利用曲波变换将图像进行分解与重构,得到不同尺度的子图像;然后提取各子图像的Hu不变矩,获得图像的曲波不变矩;最后将该方法应用于典型磨粒识别,总识别率达到83.33%。实验结果表明,与Hu不变矩和不变小波矩相比,磨粒图像的曲波不变矩能更好地表达磨粒的形貌特征。 The curvelet transform has the characteristic of anisotropy and the ability of good curve singularity expression. To overcome the shortage of invariant wavelet moments and ttu's invariant moments, curvelet transform is introduced into the wear particte feature extraction process and combined with Hu' s invariant moments. Thus, an image invariant moment extracting method utilizing curvelet transform is proposed. First the wear particle images are decomposed and reconstructed by a curvelet transform, and their sub images of different scales are obtained. Then, the curvelet invariant moments are achieved by extracting Hu' s invariant moments. Finally, the proposed method is applied for typical wear particle recognition,and a total successful recognition rate of 83.33% is accomplished. The experimental results indicate that compared with Hu' s invariant moments and invariant wavelet moments, the curvelet invariant moments can better express wear particle appearance characteristics.
机构地区 军械工程学院
出处 《中国图象图形学报》 CSCD 北大核心 2012年第2期263-268,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(50705097) 清华大学摩擦学国家重点实验室开放基金项目(SKLTKF09B06)
关键词 HU不变矩 曲波变换 特征提取 磨粒识别 Hu' s invariant moments curvelet transform feature extraction wear particle recognition
  • 相关文献

参考文献15

  • 1Hu M K. Visual pattern recognition by moment invariants[J]. IEEE Transactions on Information Theory,1962,8(2): 178-187.
  • 2黄晓霞,李红旮,朱振海.基于不变矩的SAR图象海面油膜形态分类[J].中国图象图形学报(A辑),1999,4(2):166-171. 被引量:5
  • 3杨慧英,杜文斌,张璐.Hu不变矩识别算法在自动浇注系统中的应用[J].沈阳理工大学学报,2009,28(5):34-37. 被引量:4
  • 4王向阳,杨艺萍,杨红颖.基于小波矩的抗几何攻击数字图像水印算法研究[J].中国图象图形学报,2010,15(1):15-19. 被引量:15
  • 5Candes E J,Donoho D L.Curvelet-a Surprisingly Effective Nonadaptive Representation for Objects with Edges[M]//Rabut C,Cohen A,Schumaker L L. Curves and Surfaces. Nashville,USA: Vanderbilt University Press,1999: 105-120.
  • 6Candes E J,Demanet L,Donoho D L. Fast Discrete Curvelet Transform.california:Applied and Computational Mathematics. California Institute of Technology,2005: 1-43.
  • 7许学斌,张德运,张新曼,曹仰杰.基于离散曲波变换和支持向量机的掌纹识别方法[J].红外与毫米波学报,2009,28(6):456-460. 被引量:7
  • 8Candes E J,Donoho D L. Recovering edges in ill-posed inverse problems:optimality of curvelet frames[J].Ann. Statist,2002,30(3): 784-842.
  • 9Mandal T,Majumdar A,Jonathan W Q M.Face recognition by curvelet based feature extraction [J].Lecture Notes in Computer Science,2007,4633 (1):806-817.
  • 10Saha A,Jonathan Wu Q M.Curvelet entropy for facial expression recognition[J].Lecture Notes in Computer Science,2011,6298(1):617-628 .

二级参考文献51

共引文献121

同被引文献13

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部