期刊文献+

基于遗传算法的遥感图像纹理特征选择 被引量:16

Texture feature selection in remote sensing image based on genetic algorithms
在线阅读 下载PDF
导出
摘要 本文基于Landsat 7 ETM+全色图像,以浙江省临安市大峡谷镇为研究区,进行基于遗传算法的遥感图像纹理特征选择的研究.首先利用灰度共生矩阵法和灰度-梯度共生矩阵法对研究区遥感图像进行纹理特征提取,共得到23个纹理特征,然后利用遗传算法对这23个纹理特征进行纹理特征选择,最后得到一组最优纹理特征集.实验结果表明,遗传算法因其自适应性、并行性、能较好地处理大规模复杂数据,且特别适合于解决多目标优化问题等诸多特性,所以是解决特征选择问题的理想方案. In this paper, an approach to texture feature selection in ETM4-panchromatic image based on genetic algorithms is described. Daxiagu town of Linan county, Zhejiang province is taken as the research area. Firstly, the texture features were extracted from the ETM^pan image by using gray co-occurrence matrix and gray-gradient co occurrence matrix, and all the 23 texture features were obtained. Then texture feature selection was carried out by genetic algorithms. The optimal texture sub-set could be got finally. The results show that the method of genetic algorithms can deal with the large and complicated data because of its characteristics of self-suitability and parallel, and it is very suitable for solving the problem of multi-object optimization, so the method of genetic algorithms is a better way to solve the problem of feature selection.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期310-319,共10页 Journal of Nanjing University(Natural Science)
关键词 纹理特征提取 遗传算法 纹理特征选择 LANDSAT7 ETM+ 全色图像 texture feature extraction, genetic algorithms, texture feature selection, Landsat 7 ETM 4, panchromatic image, Lin ' an city
  • 相关文献

参考文献19

二级参考文献80

  • 1吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(一)[J].数据采集与处理,1993,8(3):193-201. 被引量:145
  • 2王煦法.遗传算法及其应用[J].小型微型计算机系统,1995,16(2):59-64. 被引量:37
  • 3陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 4杨秀坤,陈晓光,马成林,方进,于立彪.用遗传神经网络方法进行苹果颜色自动检测的研究[J].农业工程学报,1997,13(2):173-176. 被引量:31
  • 5孟建.回转机械故障诊断特征提取的若干前沿技术研究:博士论文[M].西安:西安交通大学,1996..
  • 6黄星奕.[D].江苏大学,1999-10.
  • 7Adrian D. Feature Selection for Texture Analysis Using Genetic Algorithms. International Journal of Computer Mathematics, 2000(74):279-292.
  • 8Yong R, Thomas S H, Shih-Fu Chang. Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation, 1999,10(3) : 39- 62.
  • 9Shim S O, Choi T S. Image indexing by modified color co-occurrence matrix. Gabriel Fernandez. IEEE International Conference on Image Processing (Volume 3). Barcelona, Spain: Ramon Llull University,2003.493- 496.
  • 10Yu Linjiang, Gimelfarb George. Image retrieval using color co-occurrence histograms. Image and Vision Computing, New Zealand. New Zealand: Palmerston North, 2003,42-47.

共引文献227

同被引文献207

引证文献16

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部