期刊文献+

一种带共享因子的人工蜂群算法 被引量:17

Artificial Bee Colony Algorithm with Sharing Factor
在线阅读 下载PDF
导出
摘要 人工蜂群(ABC)算法在搜索过程中收敛速度较慢,且容易出现早熟现象。针对该问题,提出一种带共享因子的ABC算法。通过共享因子动态调整蜜蜂与其邻域个体之间的信息共享程度,在搜索初始阶段适当减小信息共享,避免蜂群飞过最优解所在区域,在搜索中后期增强信息共享,提高蜂群的全局寻优性能。函数测试结果表明,该算法具有较好的收敛性能,适用于求解复杂函数优化问题。 In order to overcome the problem of premature convergence frequently appeared in Artificial Bee Colony(ABC) algorithm and convergence slowly of ABC,this paper proposes an improved ABC algorithm with sharing factor.In the algorithm,the information is shared by individual and its neighbor changing dynamic according to the search process.The shared information is weakened to avoid bee colony fly across the region where global solution stays at the initial stage and enhances at the last stage to improve the global convergence of the bee colony.Functional test result shows that this algorithm has higher convergence property,and it is suitable for solving complex function optimization problem.
作者 王辉
出处 《计算机工程》 CAS CSCD 北大核心 2011年第22期139-142,共4页 Computer Engineering
基金 上海应用技术学院科研基金资助项目(YJ2009-06)
关键词 人工蜂群算法 共享因子 搜索进程 邻域个体 信息共享 Artificial Bee Colony(ABC) algorithm sharing factor search process neighborhood individual information sharing
  • 相关文献

参考文献9

  • 1Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R].[S.l.]: Erciyes University,Technical Report: TR06,2005.
  • 2Karaboga D,Basturk B.On the Performance of Artificial Bee Colony(ABC) Algorithm[J].Applied Soft Computing,2008,8(1): 687-697.
  • 3Karaboga D,Akay B.A Comparative Study of Artificial Bee Colony Algorithm[J].Applied Mathematics and Computation,2009,214(1): 108-132.
  • 4Karaboga D,Basturk B.A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony(ABC) Algorithm[J].Journal of Global Optimization,2007,39(3): 149- 171.
  • 5Karaboga D,Basturk B.Arti?cial Bee Colony(ABC) Optimization Algorithm for Solving Constrained Optimization Problems[C]// Proc.of Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing.Berlin,Germany: Springer-Verlag,2007: 789-798.
  • 6Karaboga D.A New Design Method Based on Artificial Bee Colony Algorithm for Digital IIR Filters[J].Journal of the Franklin Institute,2009,346(4): 328-348.
  • 7胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,29(11):978-982. 被引量:63
  • 8肖永豪,余卫宇.基于蜂群算法的图像边缘检测[J].计算机应用研究,2010,27(7):2748-2750. 被引量:28
  • 9王浩,汤再江,范锐.蜂群算法在装备维修任务调度中的应用[J].计算机工程,2010,36(7):242-245. 被引量:9

二级参考文献22

  • 1李慧贤,程春田,庞辽军.网格环境下的高效动态任务调度算法[J].华南理工大学学报(自然科学版),2006,34(1):82-85. 被引量:9
  • 2吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:48
  • 3马溪骏,潘若愚,杨善林.基于信息素递减的蚁群算法[J].系统仿真学报,2006,18(11):3297-3300. 被引量:18
  • 4Basturk B, Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//Proceedings of IEEE Swarm Intelligence Symposium Indianapolis. Indianapdis, USA" [s. n. ], 2006:651 - 656.
  • 5Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering[J]. Applied Mathematics and Computation, 2007 (10) : 1016 - 1025.
  • 6Von Frisch K. The dance language and orientation of bees[M]. Boston, Massachusetts, USA.. The Belknap Press of Harvard University Press, 1967.
  • 7Abbass H A. Arriage in honey-bee optimization (MBO) : a haplometrosis polygynous swarming approach [C]//Proceedings of The Congress on Evolutionary Computation (CEC2001). Seoul, Korea: [s. n. ], 2001:207 - 214.
  • 8Gutin G, Punnen A. The traveling salesman problem and its variations[M]. Dordrecht, Holland: Kluwer Academic Publishers, 2002.
  • 9Afshar A, Bozog H O, Marino M A. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation [J]. Journal of the Franklin Institute, 2007,344: 452 - 462.
  • 10Haddad O B, Afshar A, Marino M A. Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization[J]. Water Resources Management, 2006,20 : 661 - 680.

共引文献88

同被引文献132

  • 1凌云,王一鸣,孙明,张小超.基于流域算法的谷物籽粒图像分割技术[J].农业机械学报,2005,36(3):95-98. 被引量:38
  • 2包晓敏,汪亚明.基于最小错误率贝叶斯决策的苹果图像分割[J].农业工程学报,2006,22(5):122-124. 被引量:19
  • 3李惠光,姚磊,石磊.改进的Otsu理论在图像阈值选取中的应用[J].计算机仿真,2007,24(4):216-220. 被引量:15
  • 4潘文超.果蝇最佳化演算法[M].台北:沧海书局,2011:10-12.
  • 5Eusuff M M, Lansey K E. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm[J]. Journal of Water Sources Planning and Management, 2003, 129(3): 210-225.
  • 6Eusuff M M, Lansey K E, Pasha F. Shuffled Frog Leaping Algorithm: A Memetic Meta-heuristic for Discrete Optimi- zation[J]. Engineering Optimization, 2006, 38(2): 129- 154.
  • 7Zhen Ziyang, Wang Daobo, Liu Yuanyuan. Improved Shuffled Frog Leaping Algorithm for Continuous Optimization Problem[C]//Proc. of IEEE Congress on Evolutionary Computation. Trondheim, Norway: Conference Publications, 2009.
  • 8Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search [ J ]. Simulation, 2001,76(2) :60 -68.
  • 9Andrice P, Engelbrecht. Fundamentals of Computational Swarm Intelligence[M].谭营,译.北京:清华大学出版社.2009:10-15.
  • 10李英海,周建中,杨俊杰,刘力.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用,2007,43(35):19-21. 被引量:80

引证文献17

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部