期刊文献+

基于混合蛙跳算法的水文模型参数估计方法 被引量:3

Research of Parameters Estimation Method for Hydrological Model Based on Shuffled Frog Leaping Algorithm
在线阅读 下载PDF
导出
摘要 传统启发式算法在水文模型参数估计中通常存在着易早熟和收敛速度慢等缺陷,为提高水文模型的参数优化精度和算法性能,引入混合蛙跳算法(SFLA),提出一种基于SFLA的水文模型参数估计方法,将该方法应用到新安江模型的参数估计中,并与基于遗传算法(GA)的参数估计方法进行实验对比分析。实验结果表明:基于SFLA的参数优化方法在平均优化精度上相比遗传算法提高了2.5%;在固定优化精度时,优化成功率相比遗传算法提高了53.33%。证明了混合蛙跳算法应用于水文模型参数估计时,在收敛精度和收敛速度方面均有明显优势。 Traditional heuristic algorithms usually have defects such as prematurity and slow convergence for parameter estimation in Hydrologic model. In order to improve the accuracy of parameter optimization and performance of optimization algorithm for hydrological model,Shuffled Frog Leaping Algorithm( SFLA) was introduced to propose a new method of Hydrological modelparameters estimation based on SFLA. Then the method was applied to estimate the parameters of Xin'anjiang model,and compared with the parameter estimation method based on Genetic algorithm( GA) through experimental analysis. Experimental results show that the parameter optimization method based on SFLA could improve 2. 5% of the average optimize accuracy and to GA,and 53.33% of success optimize rate under the fixed precision condition than the GA method. It is proved that SFLA could be applied for parameter estimation in Hydrologic model and it has more obvious advantages in both the speed and the accuracy of convergence.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第3期80-86,共7页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(61462058) 兰州交通大学青年科学基金资助项目(2013032)
关键词 混合蛙跳算法 新安江模型 参数估计 Nash-Sutcliffe效率系数 shuffled frog leaping algorithm Xin 'anjiang model parameter estimation Nash-Sutcliffe efficiency coefficient
  • 相关文献

参考文献16

  • 1FRANCHINI M, GALEATI G. Comparing several genetic algorithm schemes for the calibration of conceptual rain- fall-runoff models [ J ]. Hydrological Sciences Journal, 1997,42(3 ) :357-379.
  • 2VRUGT J A, GUPTA H V, BOUTEN W. Real-time data assimilation for operational ensemble streamflow forecas- ting [ J ]. J. Hydrometeorol, 2006 (7) : 548 -564.
  • 3HAISHEN LU,TING HOU, HORTON R, et al. The stre- amflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method [ J ]. Journal of Hydrology,2013,480 : 102-114.
  • 4ZHAO R J, ZHANG Y L, FANG L R, et al. The Xinan- jiang model [ C ]//Hydrological Forecasting Symposium: Proceedings of the Oxford Symposium. Wallingford:IAHS Press, 1980.
  • 5ZHAO R J. The Xinanjiang model applied in China[ J]. J. Hydrol. 1992,135:371-381.
  • 6江燕,刘昌明,胡铁松,武夏宁.新安江模型参数优选的改进粒子群算法[J].水利学报,2007,38(10):1200-1206. 被引量:50
  • 7CHENG C T, OU C P, CHAU K W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-ob- jective rainfall-runoff model calibration [ J ]. Journal of Hydrology,2002,268 ( 1 ) :72 - 86.
  • 8Hapuarachchi H.A.P.,李致家,王寿辉.SCE-UA方法在新安江模型参数优化中的应用(英文)[J].湖泊科学,2001,13(4):304-314. 被引量:43
  • 9孟新华,涂启玉,周年华,郑楠.基于遗传模拟退火算法的新安江模型参数优选[J].水电自动化与大坝监测,2009,33(3):64-67. 被引量:6
  • 10EUSUFF M M, LANSEY K E. Optimization of water dis- tribution network design using the shuffled frog leaping algorithm[J]. J of Water Resources Planning and Man- agement ,2003,129 (3) :210-225.

二级参考文献108

共引文献283

同被引文献31

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部