期刊文献+

表面活性剂对中尺度气泡形状及速度的调控研究 被引量:12

Study on Modulating Shape and Velocity of Meso-Scale Bubble Using Surfactants
在线阅读 下载PDF
导出
摘要 为了有效调控中尺度气泡的行为,在纯水中通过添加不同浓度的3种表面活性剂实验研究了气泡上升过程中的形状与速度的变化.在一个方截面柱形容器内生成了4种中尺度气泡,再利用高速摄影仪记录了气泡的瞬时运动过程,通过图像处理软件分析了气泡的形状和速度.结果表明,由于Marangoni效应,适量的表面活性剂可以有效抑制中尺度气泡的变形,减小气泡的形状变化幅度,降低气泡的上升速度.相比于纯水,当曲拉通的浓度为0.15 mmol/L时,气泡高宽比的变化幅度缩减了57%;当曲拉通的浓度为0.05 mmol/L时,气泡终端上升速度降低了35%.实验中还发现,气泡的形状变化影响着气泡的瞬时速度,气泡高度比越小,上升得越快.在实验条件范围内,不同表面活性剂对气泡的调控效果有所不同,曲拉通的调控效果优于聚乙二醇和正戊醇. Experiments were conducted on the variations of shape and velocity of single bubbles during rising in three types of surfactant solutions with different concentration in order to effectively modulate the behavior of meso-scale bubbles in bubbly flow. Single bubbles with the size of 1.3-6 mm were generated in a square glass column, and the instantaneous motion of single bub- bles was recorded using a high-speed camera. Then bubble shape and velocity were determined from the recorded frames using the image analysis software. The results show that the right concentration of surfactants used here would dampen bubble deformation, reduce shape oscillation amplitude and slow clown the bubble rise velocity significantly due to the Marangoni effect. The addition of 0. 15 mmol/L Triton X-100 would reduce the oscillation amplitude of the bubble aspect ratio by 57% while the addition of 0. 05 mmol/L Triton X-100 would lower the terminal velocity of bubbles by 35% compared with those in pure water. Moreover, The bubble shape oscillation would influence the bubble transient velocity. It seems that under the present experimental conditions, the modulation effect of the addition of different types of surfactants on meso-scale bubble behavior is quite different. The addition of Triton X-100 has stronger effect on the modulation than the addition of Polyethylene glycol or n-Pentanol.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第10期93-97,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(20706007) 中央高校基本科研业务专项基金资助项目(CHD2009JC011) 流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201026)
关键词 表面活性剂 中尺度气泡 气泡调控 高速摄影 surfactant meso-scale bubble bubble modulation high-speed photography
  • 相关文献

参考文献13

  • 1KULKARNI A A, JOSHI J B. Bubble formation and bubble rise velocity in gas-liquid systems: a review [J]. Industrial and Engineering Chemistry Research, 2005, 44 (16): 5873-5931.
  • 2CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles [M]. 2nd ed. New York, USA: Academic Press, 2005.
  • 3TSUKADA T. The effect of EHD convection on mo- tion of a bubble under microgravity [J]. Journal of Chemical Engineering, 1995, 28(6): 810-815.
  • 4ELLENBERGER J, KRISHNA R. Levitation of air bubbles in liquid under low frequency vibration excite- ment[J]. Chemical Engineering Science, 2007, 62(18): 5669-5673.
  • 5CUI Zhe, LI Yanpeng, GE Yang, et al. Bubble modu- lation using acoustic standing waves in a bubbling sys- tem [J].Chemical Engineering Science, 2005, 60 (22) : 5971-5981.
  • 6李彦鹏,Fan L.S..鼓泡塔中驻波声场调制大气泡的直接模拟[J].应用基础与工程科学学报,2007,15(2):217-225. 被引量:2
  • 7FINCH J A, NESSET J E, ACUNA C. Role of frot- her on bubble production and behavior in flotation I-J]. Minerals Engineering, 2008, 21(12/13/14) : 949-957.
  • 8KRACHT W, FINCH J A. Effect of frother on initial bubble shape and velocity[J].International Journal of Mineral Processing, 2010, 94(3/4):115-120.
  • 9KRZAN M, ZAWALA J, MALYSA K. Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols and n-alkyltri- methylammonium bromides[J]. Colloids and Surfaces: A Physicochem Eng Aspects, 2007, 298(1/2):42- 51.
  • 10TAKAGI S, OGASAWARA T, MATSUMOTO Y. The effect of surfactant on the multiscale structure of bubbly flows[J]. Philosophical Transactions of the Royal Society: A, 2008, 366(3):2117-2129.

二级参考文献45

  • 1李彦鹏,Fan L.-S..鼓泡床中超声驻波的模拟及其对气泡的调制机理[J].应用声学,2006,25(5):295-300. 被引量:1
  • 2陈斌.高粘度流体中上升气泡的直接数值模拟[J].工程热物理学报,2006,27(2):255-258. 被引量:11
  • 3Grace J R, Wairegi T, Nguyen T H. Shapes and Velocities of Single Drops and Bubbles Moving Freely Through Immiscible Liquids. Trans. Instn. Chem. Engrs., 1976, 54:167-173.
  • 4Bhaga D, Weber M E. Bubbles in Viscous Liquids: Shapes, Wakes, and Velocities. J. Fluid Mech., 1981, 105: 61 85.
  • 5Van Sint Annaland M, Dijkhuizen W, Deen N G, et al. Numerical Simulation of Behavior of Gas Bubbles Using a 3-D Front-Tracking Method. AIChE J., 2006, 52:99-110.
  • 6Van Sint Annaland M, Deen N G, Kuipers J A M. Numerical Simulation of Gas Bubbles Behavior Using a Three- Dimensional Volume of Fluid Method. Chem. Eng. Sci., 2005, 60:2999-3011.
  • 7Frank X, Funfschilling D, Midoux N, et al. Bubbles in a Viscous Liquid: Lattice Boltzmann Simulation and Experimental Validation. J. Fluid Mech., 2006, 546:113 -122.
  • 8Ohta M, Imura T, Yoshida Y, et al. A Computational Study of the Effect of Initial Bubble Conditions on the Motion of a Gas Bubble Rising in Viscous Liquids. Int. J. Multiphase Flow, 2005, 31:223-237.
  • 9Sussman M, Fatemi E, Smereka P, et al. An Improved Level Set Method for Incompressible Two-Phase Flows. Comput. Fluids, 1998, 27:663-680.
  • 10Brackbill J U, Kothe D B, Zemach C. A Continuum Method for Modeling Surface Tension. J. Comput. Phys., 1992, 100(2): 335-354.

共引文献28

同被引文献130

引证文献12

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部