期刊文献+

基于光谱分析技术的黄瓜与茎叶识别研究 被引量:3

Research on Identification of Cucumber,Stem and Leaf Based on Spectrum Analysis Technology
在线阅读 下载PDF
导出
摘要 为了能够快速实时地识别温室中的黄瓜,研究了黄瓜和其茎叶的近红外反射光谱特性。利用近红外光谱仪在室内共采集138个样本(黄瓜46个,茎46个,叶46个)的反射光谱,进行Savitzky-Golay平滑后,抽取光谱中的108个样本作为校正集,采用偏差权重法选择信息量较大的光谱波段690-950nm进行研究。在主成分分析(PCA)的基础上,结合马氏距离建立识别模型,剔除了7个异常样本。用剩余的101个样本进行偏最小二乘法建模,对校正集之外的30个样本进行预测。结果显示预测值和实际值的相关性达0.9941,正确识别率达100%。说明黄瓜、茎和叶的近红外反射光谱特性之间有一定差异,可以用近红外光谱技术进行鉴别,为黄瓜识别提供了一种新的方法和思路。 To be able to quickly identify the cucumber real time, the present paper studied the near infrared reflectance characteristics of cucumber, stem and leaf. Spectral reflectance of 138 samples (46 cucumbers, 46 stems and 46 leaves) was collected using near infrared spectroscopy in the band range of 600- 1 099 nm indoor. After Savitzky-Golay smoothing preprocessing, random 108 spectral samples were put forward as calibration set. The weighted deviation method was used for choosing the spectral bands 690- 950 nm that include much more information. The samples were analyzed by PCA method to extract the principal component scores, combining the Mahalanobis distance method the recognition model was established, and seven abnormal sam- ples were excluded. The partial least squares (PLS) model was established by remaining 101 samples spectra of calibration set, which was used for predicting the validation set (30 samples except of the calibration set). The result shows that the correlation of the predicted value and the actual value reaches up to 0. 994 1, and the correct recognition rate is 100%. This significantly illustrates that the near infrared spectral reflectance characteristics are different among the cucumbers, stems and leaves, which can be successfully applied to recognition of cucumber by the method. The developed technique can provide a new method for cucumber identification.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第10期2834-2838,共5页 Spectroscopy and Spectral Analysis
基金 国家(863计划)项目(2006AA10Z259)资助
关键词 光谱分析 黄瓜识别 主成分分析 偏最小二乘法 马氏距离法 Spectral analysis Cucumber recognition Principal component analysis Partial least squares Mahalanobis distance
  • 相关文献

参考文献3

二级参考文献24

  • 1罗诗途,罗飞路,张玘,王艳玲.基于梯度调整的矩不变自动阈值图像分割算法[J].电子技术应用,2004,30(6):11-13. 被引量:12
  • 2刘祥官,刘学艺.雾化提钒工艺的参数优化[J].浙江大学学报(理学版),2005,32(1):30-33. 被引量:3
  • 3罗世华,刘祥官.高炉铁水含硅量的分形结构分析[J].物理学报,2006,55(7):3343-3348. 被引量:6
  • 4CHEN Jian. A predictive system for blast furnaces by integrating a neural network with qualitative analysis [J]. Engineering Application of Artificial Intelligence, 2001,14(1) :77-85.
  • 5LUO Shi-hua, LIU Xiang-guan, ZHAO Min, et al. Prediction for silicon content in molten iron using a combined fuzzy-associative-rules bank [C]// Lecture Notes in Computer Science. Berlin: Springer, 2005 : 667- 676.
  • 6JOLLIFFE Ian T. A note on the use of principal components in regression [J]. Applied Statistics, 1982,31 (3) :300-303.
  • 7GELADI P, KOWALSKI B R. Partial least-squares regression: a tutorial [J].Analytiea Chimiea Aeta, 1986,185(1) :1-17.
  • 8WOLDH. Nonlinear iterative partial least square modeling: some current development[C]//Muitivariate Analysis: II, Proceedings of an International Symposium on Multivariate Analysis. New York: Academic Press, 1972:383 -407.
  • 9EFRON B, GONG G. A leisurely book at the bootstrap, the jackknife and cross validation [J].The American Statistician, 19 8 3,3 7 ( 1 ) : 3 6 - 4 8.
  • 10Tokuda M, Namikawa K, Suguri M, et al. Development of watermelon-harvesting robot (Ⅱ)-machine vision system for watermelon-harvesting robot [ C] // Proceedings of International Symposium on Automation and Robotics in Bioproduction and Processing, 1995, 2: 9-16.

共引文献109

同被引文献42

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部