期刊文献+

主成分回归和偏最小二乘法在高炉冶炼中的应用 被引量:37

Application of principal component regression and partial least square in blast furnace iron-making.
在线阅读 下载PDF
导出
摘要 以邯郸钢铁公司2000 m3高炉采集的数据为样本,采用主成分回归(PCR)方法研究了各运行参数对高炉铁水含硅量的贡献,实现了高维复杂数据的降维.考虑到偏最小二乘法(PLS)在处理多重共线性数据中的优势,利用PLS对高炉铁水含硅量进行预测.结果表明,主成分回归和偏最小二乘法在对高炉冶炼过程中产生的大量数据的处理具有其独到的优势,取得了显著的效果. With datasets from 2 000 m3 blast furnace of Han Steel as a sample space, principal component regression (PCR) was used to investigate the contribution of operating parameters to the silicon content of hot metal, in blast furnace iron-making and so the complexity of data was reduced. Considering the advantages of partial least square (PLS) in dealing with collinear data, it is used to predict silicon content. The result showed that PCR and PLS had their own advantages for application in iron-making process.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2009年第1期33-36,共4页 Journal of Zhejiang University(Science Edition)
基金 国家科技部重点推广项目资助(No.2005EC000166)
关键词 高炉冶炼 高维复杂数据 主成分回归 偏最小二乘法 blast furnace iron-making principal component regression partial least square
  • 相关文献

参考文献10

  • 1周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2005.
  • 2CHEN Jian. A predictive system for blast furnaces by integrating a neural network with qualitative analysis [J]. Engineering Application of Artificial Intelligence, 2001,14(1) :77-85.
  • 3LUO Shi-hua, LIU Xiang-guan, ZHAO Min, et al. Prediction for silicon content in molten iron using a combined fuzzy-associative-rules bank [C]// Lecture Notes in Computer Science. Berlin: Springer, 2005 : 667- 676.
  • 4郜传厚,刘祥官.高炉冶炼过程的混沌性辨识 Ⅰ.饱和关联维数的确定[J].金属学报,2004,40(4):347-350. 被引量:19
  • 5罗世华,刘祥官.高炉铁水含硅量的分形结构分析[J].物理学报,2006,55(7):3343-3348. 被引量:6
  • 6JOLLIFFE Ian T. A note on the use of principal components in regression [J]. Applied Statistics, 1982,31 (3) :300-303.
  • 7GELADI P, KOWALSKI B R. Partial least-squares regression: a tutorial [J].Analytiea Chimiea Aeta, 1986,185(1) :1-17.
  • 8WOLDH. Nonlinear iterative partial least square modeling: some current development[C]//Muitivariate Analysis: II, Proceedings of an International Symposium on Multivariate Analysis. New York: Academic Press, 1972:383 -407.
  • 9EFRON B, GONG G. A leisurely book at the bootstrap, the jackknife and cross validation [J].The American Statistician, 19 8 3,3 7 ( 1 ) : 3 6 - 4 8.
  • 10刘祥官,刘学艺.雾化提钒工艺的参数优化[J].浙江大学学报(理学版),2005,32(1):30-33. 被引量:3

二级参考文献20

共引文献59

同被引文献311

引证文献37

二级引证文献258

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部