期刊文献+

磁悬浮轴承数字控制的稳定性分析及预补偿算法 被引量:6

Stability Analysis of the AMB Digital Control System and Its Prediction Compensatory Algorithm
在线阅读 下载PDF
导出
摘要 采用数字控制技术取代传统的模拟控制是磁悬浮轴承控制技术的发展方向。但数字控制器固有的时延现象会严重影响控制器的品质,甚至引起控制器工作的失败。本文在研究了磁悬浮轴承数字控制时延的组成及其对控制系统性能影响的基础上提出了一种新的时延补偿算法,该算法通过预测下一采样时刻的系统输出来消除时延对控制系统的影响。预测算法由磁悬浮轴承的离散化模型得到,算法系数由神经网络修正。实验结果表明该算法能够很好地补偿数字控制器的时延,实现了数字控制磁悬浮轴承的稳定悬浮和旋转。 Using digital control technology in active magnetic bearing(AMB) system has many advantages,but the time delay in digital controller can seriously affect the quality of the control system,and even lead to the failure of the controller.On the basis of the research on the component of the time delay and its effect on the control system,an compensatory algorithm for the time delay is given in this paper.This algorithm removes the time delay effect by means of predicting the output of system in the next sampling point.The prediction algorithm is deduced from the discrete model of the magnetic bearing and is corrected using neural network.Experimental results show that this algorithm can compensate the time delay very well.Steady suspensional and rotation of the AMB are fulfilled after using digital control system with this algorithm.
出处 《电工技术学报》 EI CSCD 北大核心 2011年第6期108-112,共5页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(50775129)
关键词 磁悬浮轴承 数字控制 时延 补偿算法 Active magnetic bearing digital control time delay compensatory algorithm
  • 相关文献

参考文献1

二级参考文献16

  • 1Ferdinand Verhulst.Nonlinear Differential Equations and Dynamical Systems[M].Berlin:SpringerVerlag,1990.
  • 2Jackson E Atlee.Perspectives of Nonlinear Dynamics[M].New York:Cambridge University Press,1991.
  • 3Guckenheimer J,Holmes P.Nonlinear Oscillation and Bifurcation of Vector Fields[M].New York:Springer-Verlag,1993.
  • 4Holmes P,Rand D.Phase portraits and bifurcation of the nonlinear oscillator:(x) + (α +γx2)(x) + βx +δx3 = 0[J].International Journal of Nonlinear Mechanics,1980,15(6):449-458.
  • 5Tsuda Y,Tamura H,Sueoka A,et al.Chaotic behaviour of a nonlinear vibrating system with a retarded argument[J].JSME International Journal,Series Ⅲ,1992,35(2):259-267.
  • 6Szemplinska-Stupnicka,Rudowski J.The coexistence of periodic,almost-periodic and chaotic attractions in the Van der Pol-Duffing oscillator[J].Journal of Sound and Vibration,1997,199(2):165-175.
  • 7Maccari Attilio.Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation[J].Nonlinear Dynamics,1998,15(4):329-343.
  • 8Algaba A,Fernandez-Sanchez E,Freire E,et al.Oscillation-sliding in a modilied Van der Pol-Duffing electronic oscillator[J].Journal of Sound and Vibration,2002,249(5):899-907.
  • 9XU Jian,Chung K W.Effects of time delayed position feedback on a Van der Pol-Duffing oscillator[J].Physica D,2003,180(1):17-39.
  • 10Moukam Kakmeni F M,Bowong S,Tchawoua C,et al.Strange attractors and chaos control in a Duffing-Van der Pol oscillator with two external periodic forces[J].Journal of Sound and Vibration,2004,277(4/5):783-799.

共引文献11

同被引文献82

引证文献6

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部