期刊文献+

改进型粒子群算法及其在选址问题中的应用 被引量:7

Novel particle swarm optimization algorithm and its application in solvingmin-max location problem
在线阅读 下载PDF
导出
摘要 为了解决基本粒子群算法不易跳出局部最优的问题,提出了一种协同粒子群优化算法。在算法中通过加入权值递减的惯性因子和变异算子以克服基本PSO易早熟、不易收敛以及缺乏多样性的不足。将算法应用于极小极大选址问题的实验结果表明,算法能够有效地求解极小极大选址问题,具有较好的应用价值。 To solve the problem that particle swarm optimization algorithm is apt to trap in local optimum,a novel cooperative particle swarm optimization algorithm is proposed.In order to overcome the drawback of basic PSO,such as being subject to falling into local optimization,being poor in performance of precision and lack of diversity,an improved PSO,including the strategy for decreasing inertia weight and mutation operator,is proposed.The test experiments for solving min-max location problem show that the proposed solution can effectively reduce the cost of location problem,and has good application value
出处 《计算机工程与应用》 CSCD 北大核心 2011年第14期56-58,共3页 Computer Engineering and Applications
基金 河南省科技攻关项目(No.102102210483)
关键词 粒子群优化算法 协同粒子群 选址问题 particle swarm optimization algorithm cooperative particle swarm location problem
  • 相关文献

参考文献5

二级参考文献152

共引文献115

同被引文献58

  • 1杨丰梅,华国伟,邓猛,黎建强.选址问题研究的若干进展[J].运筹与管理,2005,14(6):1-7. 被引量:75
  • 2王晓博,李一军.电子商务环境下物流配送中心选址模型与评价方法[J].系统工程理论方法应用,2006,15(3):199-204. 被引量:33
  • 3秦斌,王欣,吴敏,阳春华.基于多智能体系统的分布式智能控制系统框架与原型系统开发[J].计算机集成制造系统,2006,12(10):1632-1636. 被引量:9
  • 4秦进,史峰.物流设施选址问题的双层模拟退火算法[J].系统工程,2007,25(2):36-40. 被引量:35
  • 5吴仆.设施选址中的一些模型与算法[D].南京:南京航空航天大学,2010.
  • 6Mohamadnejad M, Gholami R, Ataei M.Comparison of intelligence science techniques and empirical methods for prediction of blasting vibrations[J].Tunnelling and Underground Space Technology, 2012,28 ( 3 ) : 238-244.
  • 7Santos O J,Tarcisio B C.Artificial neural networks anal- ysis of Sao Paulo subway tunnel settlement data[J].Tun- nelling and Underground Space Technology, 2008, 23 (5) :481-491.
  • 8Cortes C, Vapnik V.Support vector networks[J].Machine Learning, 1995,20 ( 3 ) : 273-297.
  • 9Chaves R, Ramirez J, G6rriz J M, et al.Association rule-based feature selection method for Alzheimer's dis- ease diagnosis[J].Expert Systems with Applications, 2012, 39(14) : 11766-11774.
  • 10Tao Jianwen, Chung Fulai, Wang Shitong.On minimum dis- tribution discrepancy support vector machine for domain adaotation[J].Pattern Recognition,2012,45( 11 ) :3962-3984.

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部