期刊文献+

基于交叉变异的混合粒子群优化算法 被引量:9

Hybrid particle swarm optimization based on crossover and mutation
在线阅读 下载PDF
导出
摘要 粒子群优化算法是一种基于群体智能理论的全局优化算法,通过群体中粒子间的合作与竞争实现对问题空间的高效搜索。针对算法后期收敛速度较慢、易陷入局部最优的缺点,提出了一种混合粒子群算法。该算法通过改变种群初始化方法,引入交叉和变异机制等措施改善基本粒子群算法的性能。数值试验结果表明,改进型粒子群算法在提高全局寻优能力和加快收敛速度等方面均有良好的表现。 Particle swarm optimization(PSO) is a global optimization algorithm based on swarm intelligence theory,and search the problem space effectively through cooperation and competition among the individuals of the population.Aiming at the shortcoming of basic PSO algorithm,that is slow convergence rate at ending and easily plunging into the local optimum,a new hybrid PSO is proposed.By changing the method of initialization and adding the crossover and mutation to the algorithm,the hybrid PSO's performance is significant improved.Experimental results indicate that the modified PSO has good behavior both on improving the global convergence ability and enhancing convergence rate.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第17期85-88,共4页 Computer Engineering and Applications
关键词 粒子群优化算法 交叉 变异 混合 particle swarm optimization crossover mutation hybrid
  • 相关文献

参考文献18

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neutral Networks,Australia,1995:1942-1948.
  • 2Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proceeding of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43.
  • 3Shi Yu-hui,Eberhart R.A modified particle swarm optimizer[C]//IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,1998:69-73.
  • 4Venter G.Particle swarm optimization[C]//43rd AIAA/ASME/ASCE/ASC structure,Structural Dynamics,and Materials Con,Denver,Colomdo.April 2002:22-25.
  • 5Eberhart R C,Shi Yu-hui.Particle swarm optimization:developments,applications and resources[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,2001:81-86.
  • 6Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceeding of the Congress on Evolutionary Computation,Piscataway,NJ,1999:1951-1957.
  • 7Angeline P J.Using Selection to improve particle swarm optimization[C]/Proceeding of UCNN,Washington,USA,1998:84-89.
  • 8Lφvbjerg M,Rasmussen T K,Krink T.Hybrid panicle swarm optimizer with breeding and subpopulatiou[C]//Proceeding of Genetic and Evolutionary Computation Conference,San Francisco,2001:469-476.
  • 9Vesterstrφm J S,Riget J,Kriuk T.Division of labor in particle swarm optimization[C]//Proceeding of IEEE Congress on Evolutionary Computation,Honolulu,Hawaii,2002:1570-1575.
  • 10冯奇峰,李言.改进粒子群优化算法在工程优化问题中的应用研究[J].仪器仪表学报,2005,26(9):984-987. 被引量:25

二级参考文献8

  • 1李炳宇,萧蕴诗,汪镭.PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,40(18):74-76. 被引量:54
  • 2Kennedy J,Eberhart R C. Particle swarm optimization[A]. Proc. IEEE Int. Conf. Neural Networks [C],Piscataway, NJ : IEEE Press, 1995,1942 - 1948.
  • 3Dorigo M,Gambardella L M. Ant colonies for the traveling salesman problem[J].
  • 4Frans van den Bergh. An analysis of particle swarm opertimizer [D]. Pretoria.. Natural and Agricultrual Science University of Pretoria ,November 2001.
  • 5Liping Zhang,et al. A new approach to improve particle swarm optimization [J].Springer-Verlag Heidelberg,ISSN : 0302-9743,2003,2723 : 134 - 139.
  • 6Tim Hendtlass. Preserving diversity in particle swarm optimization [J].Springer-Verlag Heidelberg, ISSN:0302-9743. 2003,2718:31 - 40.
  • 7张铃,ahu.edu.cn,张钹.遗传算法机理的研究[J].软件学报,2000,11(7):945-952. 被引量:130
  • 8李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:317

共引文献24

同被引文献95

引证文献9

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部