期刊文献+

基于小波迹和匹配追踪算法的超声波检测信号消噪 被引量:11

Denoising of Ultrasonic Testing Signal Based on Wavelet Footprint and Matching Pursuit
在线阅读 下载PDF
导出
摘要 针对某大型国有企业的零件在线无损检测工程实际需求,为了提高超声波检测的准确度和精度,引入小波迹理论和匹配追踪算法对超声波检测信号进行消噪处理.首先,在信号的小波变换基础上构建一个小波迹字典;然后,在小波迹域内进行阈值消噪去除信号中的噪声;最后,利用匹配追踪算法通过有限步骤的迭代后,在小波迹字典上用一定数量的小波迹的组合来实现原信号的稀疏描述.小波迹字典内的小波迹具有对信号结构特征无损的描述能力,在小波迹域内消噪克服了传统小波消噪不考虑各尺度之间小波系数的相关性而只进行简单的系数收缩的缺陷.通过仿真试验将本文采用的方法与传统的小波硬阈值和软阈值消噪技术进行了对比,结果表明该方法的消噪效果要优于传统的小波消噪方法.实际超声波检测信号的处理结果也论证了本文所采用消噪技术的优越性. In order to improve the nicety and precision of online ultrasonic testing of parts in one big national factory,Wavelet Footprint and Matching Pursuit were employed to denoise the ultrasonic testing signal.Firstly,a wavelet footprint dictionary was constructed from wavelet basis function.Secondly,a threshold was applied in the footprint domain to remove the noise from the noisy signal.At last,by adopting the matching pursuit algorithm,a sparse representation of the testing signal was achieved with a certain number of wavelet footprints in a finite number of iterations in the footprint dictionary.The wavelet footprints characterize efficiently the singular structures of signal.Denoising based on wavelet footprint can better exploit the dependency of the wavelet coefficients across scales than traditional wavelet based denoising which just simply shrinks the wavelet coefficients.The experimental simulation results showed that this method outperformed traditional hard and soft threshold denoising methods.The employed approach was also applied in denoising of actual ultrasonic testing signal.The performance confirmed the usefulness of this approach.
出处 《应用基础与工程科学学报》 EI CSCD 2011年第2期297-304,共8页 Journal of Basic Science and Engineering
基金 国家自然科学基金项目(51075287) 四川省国际科技合作与交流研究计划项目(2007H12-017)
关键词 小波迹 匹配追踪算法 无损检测 信号消噪 footprint MP ultrasonic testing signal denoising
  • 相关文献

参考文献11

  • 1Newhouse V L, Bilgutay N M, Saniie J. Flaw-to-grain echo enhancement by split-spectrum processing[ J ]. Ultrasonics, 1982,20(2) :59-68.
  • 2Angrisani L, Daponte P, D'Apuzzo M. The detection of echoes from muhilayer structures using the wavelet transform [ J ]. IEEE Transactions on Instrumentation and Measurement,2000,49 (4) :727-731.
  • 3杨克己,乔华伟.基于支持矢量机的小波域超声信号消噪技术[J].机械工程学报,2008,44(6):66-71. 被引量:9
  • 4蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350. 被引量:48
  • 5Dragotti P L, Vetterli M. Wavelet footprints:Theory, algorithms, and applications [ J ]. IEEE Transactions on Signal Processing,2003,51 ( 5 ) : 1306-1323.
  • 6Wei H T, Jeoti V. A wavelet footprints-based compression scheme for ECG signals [ C ]. TENCON-IEEE Region 10 Conference Proceedings. IEEE Region 10 Conference on Analog and Digital Techniques in Electrical Engineering, Chiang Mai, Thailand,2004 : A283-A286.
  • 7Wei H T, Jeoti V. Compression and enhancement of digital mammograms with wavelet footprints [ C ]. TENCON-IEEE Region 10 Conference Proceedings. IEEE Region 10 Conference, Melbourne, AUSTRALIA, 2005, TENCON 2005-2005 IEEE REGION 10 CONFERENCE,VOLS 1-5,2006 : 1974-1977.
  • 8Sharifzadeh M, Azmoodeh F, Shahabi C. Change detection in time series data using wavelet footprints [ C ]. Lecture Notes in Computer Science. 9th International Symposium on Advances in Spatial and Temporal Databases Angra dos Reis, BRAZIL,2005 (3633) : 127-144.
  • 9Mallat S,Zhang Z. Matching pursuit with time-frequency dictionaries[ J]. IEEE Transactions on Signal Processing, 1993 ,4l (12) :3397-3415.
  • 10Donoho D L,Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika,1994,81 (12) :425-455.

二级参考文献17

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:195
  • 2于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:57
  • 3杨晓慧,焦李成,李伟.基于第二代bandelets的图像去噪[J].电子学报,2006,34(11):2063-2067. 被引量:14
  • 4D L Donoho. De-noising by soft thresholding[J]. IEEE Trans on Information Theory, 1995,41 (3) : 613 - 627.
  • 5J Portilla, V Strela, et al. Image de-noising using scale mixtures of Gaussians in the wavelet domain[ J]. IEEE Trans on Image Processing, 2003,12(11) : 1338 - 1351.
  • 6M Elad, M Aharon. Image denoising via sparse and redundant representation over learned dictionaries[J]. IEEE Trans on Image Processing, 2006,15 (12) : 3736 - 3745.
  • 7S G Mallat, Z Zhang. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41 (12) :3397 - 3415.
  • 8J Nocedal, S J Wright. Numerical Optimization[M ]. New York: Springer Verlag,2006.
  • 9J Barzilai, J Borwein. Two-point step size gradient methods[J].IMA Journal of Numerical Analysis, 1988, 8 ( 1 ) : 141 - 148.
  • 10SHANKAR P M, BENCHARIT U, BILGUTAY N M, et al. Grain noise suppression through bandpass filtering [J]. Materials Evaluation,1988, 46(7): 1 100-1 104.

共引文献54

同被引文献106

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部