期刊文献+

基于稀疏序列的图像去噪方法及应用

Image Denoising Based on Sparse Sequences and Its Application
在线阅读 下载PDF
导出
摘要 文中基于图像稀疏分解,根据图像与噪声的稀疏分解不同,提出一种基于非对称原子模型的原子库,通过算法优化,实现对采集的布坯图像进行有效去噪分析,提高去噪图像的PSNR值,且具有更好的视觉效果。将所采集到的布坯数字图像去噪后将背景和缺陷进行分离,才能更有效地将缺陷进行界定,以利后续的相关特征提取。通过实验,与小波类去噪方法对比,文中的学习算法能更好地去除图像噪声,保留图像细节信息,获得更高PSNR值。 Base on the image sparse decomposition, according to the different characters of image and noise in sparse decomposition, proposed a model based on asymmetric atomic atoms library ,by algorithm the acquisition of effective de-noising analysis of gray images. Denoising to improve image PSNR values, and has a better visual effect. Will be collected by digital image denoising cloth blank background and the defects after separation in order to more effectively define the defects in order to facilitate the follow-up of the relevant characteristics of extraction. Experimental results show that in comparison with the wavelet based denoising methods, our learning based algorithm has better denoising ability, keep more detail image information and improve the peak signal to noise ratio.
出处 《计算机技术与发展》 2011年第3期113-116,共4页 Computer Technology and Development
基金 贵州省自然科学基金(黔科合J字[2009]2130号) 贵州大学自然科学基金(贵大自青基合字(2009)026号)
关键词 稀疏分解 自适应 峰值信噪比 sparse decomposifion adapfive PSNR
  • 相关文献

参考文献10

  • 1冈萨雷斯 R C.数字图像处理[M].北京:电子工业出版社,2002.123-124.
  • 2Elad M,Aharon M.Image denoising via sparse and redundantrepresentation over leamed dictionaries[J].IEEE Trans on Image Processing,2006,15(12):3736-3745.
  • 3傅霆,尧德中.稀疏分解的加权迭代方法及其初步应用[J].电子学报,2004,32(4):567-570. 被引量:27
  • 4Remi G,Emmanuel B.Harmoic decomposition of audio signals wit h matching pursuit[J].IEEE Transactions on Signal Processing,2003,51(1):101-111.
  • 5Aharon M,Elad M,Bruckstein A M.The K-SVD:An algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Trrans.Signal Process,2006,54(11):4311-4322.
  • 6田村秀行.计算机图像处理[M].金喜子,乔双,译.北京:科学出版社,2004.
  • 7Ahston M,Elad M,Bruckstein A M.On the uniqueness of ovcrcomplete dictionaries,and a practical way to retrieve them[J].J.Lin.Algebra Appl,2006,416:48-67.
  • 8章毓晋.图象理解与计算机工程[M].北京:清华大学出版社,2000.
  • 9Crace C S.Wavelet Thresholding for Multiple Noisy Image Copies[J].IEEE Trasactions on Image Processing,2000,9(9):1631-1635.
  • 10蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350. 被引量:48

二级参考文献17

  • 1杨晓慧,焦李成,李伟.基于第二代bandelets的图像去噪[J].电子学报,2006,34(11):2063-2067. 被引量:14
  • 2D L Donoho. De-noising by soft thresholding[J]. IEEE Trans on Information Theory, 1995,41 (3) : 613 - 627.
  • 3J Portilla, V Strela, et al. Image de-noising using scale mixtures of Gaussians in the wavelet domain[ J]. IEEE Trans on Image Processing, 2003,12(11) : 1338 - 1351.
  • 4M Elad, M Aharon. Image denoising via sparse and redundant representation over learned dictionaries[J]. IEEE Trans on Image Processing, 2006,15 (12) : 3736 - 3745.
  • 5S G Mallat, Z Zhang. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41 (12) :3397 - 3415.
  • 6J Nocedal, S J Wright. Numerical Optimization[M ]. New York: Springer Verlag,2006.
  • 7J Barzilai, J Borwein. Two-point step size gradient methods[J].IMA Journal of Numerical Analysis, 1988, 8 ( 1 ) : 141 - 148.
  • 8B A Olshausen,D J Field.Sparse coding with an overcomplete basis set:a strategy employed by V1[J]? Vision Research,1997,37:3311-3325.
  • 9M Lewicki,T Sejnowksi.Learning overcomplete representations[J].Neural.Computation,2000,12:337-365.
  • 10Chen S S,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM J.Sci Comp,1999,20(1):33-61.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部